Article

Role of natural killer cells in infection with the mouse pneumonitis agent (murine Chlamydia trachomatis).

Infection and Immunity (Impact Factor: 4.07). 02/1987; 55(1):223-6.
Source: PubMed

ABSTRACT Natural killer (NK) activity is increased in both spleen and lung early in pulmonary infection by murine Chlamydia trachomatis in both susceptible nude and resistant heterozygous (nu/+) mice. Ablation of the rise in NK activity by giving the mice antiasialo GM-1 antibody or stimulation of NK activity by immunomodulators did not affect quantitative tissue counts of the mouse pneumonitis biovar of C. trachomatis or significantly affect survival. Studies are needed to further define the role of NK cells in host defense, immunoregulation, and immunopathology during chlamydial infection.

0 Bookmarks
 · 
49 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By using a T, B, or NK cell-deficient mouse strain (recombinase-activating gene (RAG)-1(-/-)/common cytokine receptor gamma-chain (gamma(C)R)), and T and B cell and IFN-gamma-deficient (RAG-1(-/-)/IFN-gamma(-/-)) mice, we have studied the generation of immunity against infection by Chlamydia pneumoniae. We found that IFN-gamma secreted by innate-cell populations protect against C. pneumoniae infection. However, NK cells were not needed for such IFN-gamma-dependent innate immune protection. Inoculation of wild type, but not IFN-gamma(-/-) bone marrow-derived macrophages protected RAG-1(-/-)/IFN-gamma(-/-) mice against C. pneumoniae infection. In line, pulmonary macrophages from RAG-1(-/-) C. pneumoniae-infected mice expressed IFN-gamma mRNA. Reconstitution of RAG-1(-/-)/gamma(c)R(-/-) or RAG-1(-/-)/IFN-gamma(-/-) mice with CD4(+) or CD8(+) cells by i.v. transfer of FACS sorted wild type spleen cells (SC) increased resistance to C. pneumoniae infection. On the contrary, no protection was observed upon transfer of IFN-gamma(-/-) CD4(+) or IFN-gamma(-/-) CD8(+) SC. T cell-dependent protection against C. pneumoniae was weaker when IFN-gammaR(-/-) CD4(+) or IFN-gammaR(-/-) CD8(+) SC were inoculated into RAG-1(-/-)/IFN-gamma(-/-) mice. Thus both nonlymphoid and T cell-derived IFN-gamma can play a central and complementary role in protection against C. pneumoniae. IFN-gamma secreted by nonlymphoid cells was not required for T cell-mediated protection against C. pneumoniae; however, IFN-gamma regulated T cell protective functions.
    The Journal of Immunology 03/2004; 172(4):2407-15. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chlamydia are intracellular bacteria which infect many vertebrates, including humans. They cause a myriad of severe diseases, ranging from asymptomatic infection to pneumonia, blindness or infertility. IFN-gamma plays an important role in defense against acute infection and in the establishment of persistence. Chlamydia have evolved mechanisms to escape IFN-gamma functions. IFN-gamma-mediated effector mechanisms may involve effects on the metabolism of tryptophan or iron, on the inducible NO synthase (iNOS), on the secretion of chemokines and adhesion molecules or on the regulation of T-cell activities. IFN-gamma is secreted by the innate and the adaptive arms of the immune system. Within the former, Chlamydia-infected macrophages express IFN-gamma that in turn mediates resistance to infection. IFN-alpha/beta are pivotal for both IFN-gamma- and iNOS-mediated resistance to chlamydial infection in macrophages.
    Current Opinion in Immunology 09/2002; 14(4):444-51. · 8.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DC) play a key role in establishing protective adaptive immunity in intracellular bacterial infections, but the cells influencing DC function in vivo remain unclear. In this study, we investigated the role of NK cells in modulating the function of DC using a murine Chlamydia infection model. We found that the NK cell-depleted mice showed exacerbated disease after respiratory tract Chlamydia muridarum infection, which was correlated with altered T cell cytokine profile. Furthermore, DC from C. muridarum-infected NK-depleted mice (NK(-)DC) exhibited a less mature phenotype compared with that of DC from the infected mice without NK depletion (NK(+)DC). NK(-)DC produced significantly lower levels of both IL-12 and IL-10 than those of NK(+)DC. Moreover, NK(-)DC showed reduced ability to direct primary and established Ag-specific Th1 CD4(+) T cell responses in DC-T coculture systems. More importantly, adoptive transfer of NK(-)DC, in contrast to NK(+)DC, failed to induce type 1 protective immunity in recipients after challenge infection. Finally, NK cells showed strong direct enhancing effect on IL-12 production by DC in an NK-DC coculture system, which was partially reduced by blocking NKG2D receptors signaling and virtually abolished by neutralizing IFN-γ activity. The data demonstrate a critical role of NK cells in modulating DC function in an intracellular bacterial infection.
    The Journal of Immunology 07/2011; 187(1):401-11. · 5.52 Impact Factor

Full-text

View
0 Downloads
Available from