X-ray Studies of Two Neutron Stars in 47 Tucanae: Toward Constraints on the Equation of State

The Astrophysical Journal (Impact Factor: 6.73). 01/2003; DOI: 10.1086/374039
Source: arXiv

ABSTRACT We report spectral and variability analysis of two quiescent low mass X-ray binaries (X5 and X7, previously detected with the ROSAT HRI) in a Chandra ACIS-I observation of the globular cluster 47 Tuc. X5 demonstrates sharp eclipses with an 8.666+-0.01 hr period, as well as dips showing an increased N_H column. The thermal spectra of X5 and X7 are well-modeled by unmagnetized hydrogen atmospheres of hot neutron stars. No hard power law component is required. A possible edge or absorption feature is identified near 0.64 keV, perhaps an OV edge from a hot wind. Spectral fits imply that X7 is significantly more massive than the canonical 1.4 \Msun neutron star mass, with M>1.8 \Msun for a radius range of 9-14 km, while X5's spectrum is consistent with a neutron star of mass 1.4 \Msun for the same radius range. Alternatively, if much of the X-ray luminosity is due to continuing accretion onto the neutron star surface, the feature may be the 0.87 keV rest-frame absorption complex (O VIII & other metal lines) intrinsic to the neutron star atmosphere, and a mass of 1.4 \Msun for X7 may be allowed. Comment: 16 pages, 7 figures, accepted by ApJ

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter -- present in the core of NSs -- is best described by "normal matter" equations of state (EoSs). Such EoSs predict that the radii of NSs, Rns, are quasi-constant (within measurement errors, of ~10%) for astrophysically relevant masses (Mns > 0.5 Msun). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single Rns value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov-Chain Monte-Carlo approach, we produce the marginalized posterior distribution for Rns, constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions,we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, Rns=9.1(+1.3)(-1.5) km (90%-confidence). Such a value is consistent with low-res equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.
    The Astrophysical Journal 01/2013; 772(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The McGill Planar Hydrogen Atmosphere Code (McPHAC) v1.1 calculates the hydrostatic equilibrium structure and emergent spectrum of an unmagnetized hydrogen atmosphere in the plane-parallel approximation, at surface gravities appropriate for neutron stars. McPHAC incorporates several improvements over previous codes for which tabulated model spectra are available: (1) Thomson scattering is treated anisotropically, which is shown to result in a 0.2%-3% correction in the emergent spectral flux across the 0.1-5 keV passband; (2) the McPHAC source code is made available to the community, allowing it to be scrutinized and modified by other researchers wishing to study or extend its capabilities; and (3) the numerical uncertainty resulting from the discrete and iterative solution is studied as a function of photon energy, indicating that McPHAC is capable of producing spectra with numerical uncertainties <0.01%. The accuracy of the spectra may at present be limited to {approx}1%, but McPHAC enables researchers to study the impact of uncertain inputs and additional physical effects, thereby supporting future efforts to reduce those inaccuracies. Comparison of McPHAC results with spectra from one of the previous model atmosphere codes (NSA) shows agreement to {approx}<1% near the peaks of the emergent spectra. However, in the Wien tail a significant deficit of flux in the spectra of the previous model is revealed, determined to be due to the previous work not considering large enough optical depths at the highest photon frequencies. The deficit is most significant for spectra with T{sub eff} < 10{sup 5.6} K, though even there it may not be of much practical importance for most observations.
    The Astrophysical Journal 04/2012; 749(1). · 6.73 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014