Topology of the universe from COBE-DMR; a wavelet approach

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.23). 05/2002; DOI: 10.1111/j.1365-2966.2004.07672.x
Source: arXiv

ABSTRACT In this paper we pursue a new technique to search for evidence of a finite Universe, making use of a spherical mexican-hat wavelet decomposition of the microwave background fluctuations. Using the information provided by the wavelet coefficients at several scales we test whether compact orientable flat topologies are consistent with the COBE-DMR data. We consider topological sizes ranging from half to twice the horizon size. A scale-scale correlation test indicates that non-trivial topologies with appropriate topological sizes are as consistent with the COBE-DMR data as an infinite universe. Among the finite models the data seems to prefer a Universe which is about the size of the horizon for all but the hypertorus and the triple-twist torus. For the latter the wavelet technique does not seem a good discriminator of scales for the range of topological sizes considered here, while a hypertorus has a preferred size which is 80% of the horizon. This analysis allows us to find a best fit topological size for each model, although cosmic variance might limit our ability to distinguish some of the topologies. Comment: 10 pages, 13 figures (12 coloured), submitted to MNRAS. Figures 1,2 and 3 are not included but a complete version of the paper with high resolution figures can be downloaded from (

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Full-sky CMB maps from the 2015 Planck release allow us to detect departures from global isotropy on the largest scales. We present the first searches using CMB polarization for correlations induced by a non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance $\chi_{rec}$). We specialize to flat spaces with toroidal and slab topologies, finding that explicit searches for the latter are sensitive to other topologies with antipodal symmetry. These searches yield no detection of a compact topology at a scale below the diameter of the last scattering surface. The limits on the radius $R_i$ of the largest sphere inscribed in the topological domain (at log-likelihood-ratio $\Delta\ln{L}>-5$ relative to a simply-connected flat Planck best-fit model) are $R_i>0.97\chi_{rec}$ for the cubic torus and $R_i>0.56\chi_{rec}$ for the slab. The limit for the cubic torus from the matched-circles search is numerically equivalent, $R_i>0.97\chi_{rec}$ (99% CL) from polarisation data alone. We also perform a Bayesian search for a Bianchi VII$_h$ geometry. In the non-physical setting where the Bianchi cosmology is decoupled from the standard cosmology, Planck temperature data favour the inclusion of a Bianchi component. However, the cosmological parameters generating this pattern are in strong disagreement with those found from CMB anisotropy data alone. Fitting the induced polarization pattern for this model to Planck data requires an amplitude of $-0.1\pm0.04$ compared to +1 if the model were to be correct. In the physical setting where the Bianchi parameters are fit simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VII$_h$ cosmology and constrain the vorticity of such models to $(\omega/H)_0<7.6\times10^{-10}$ (95% CL). [Abridged]
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new technique for constraining the topology of the Universe. The method exploits the existence of correlations in the phases of the spherical harmonic coefficients of the cosmic microwave background (CMB) temperature pattern associated with matched pairs of circles seen in the sky in universes with non-trivial topology. The method is computationally faster than all other statistics developed to hunt for these matched circles. We applied the method to a range of simulations with topologies of various forms and on different scales. A characteristic form of phase correlation is found in the simulations. We also applied the method to preliminary CMB maps derived from WMAP, but the separation of topological effects from e.g. foregrounds is not straightforward.
    Monthly Notices of the Royal Astronomical Society 04/2005; 358(4):1285-1289. DOI:10.1111/j.1365-2966.2005.08792.x · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article focuses on the study of the statistical properties of the cosmic microwave background (CMB) temperature fluctuations. This study helps to define a coherent framework for the origin of the Universe, its evolution and the structure formation. The current standard model is based in the Big-Bang theory, in the context of the Cosmic Inflation scenario, and predicts that the CMB temperature fluctuations can be understood as the realization of a statistical isotropic and Gaussian random field. To probe whether these statistical properties are satisfied or not is capital, since deviations from these hypotheses would indicate that non-standard models might play an important role in the dynamics of the Universe. But that is not all. There are alternative sources of anisotropy or non-Gaussianity that could contaminate the CMB signal as well. Hence, sophisticated techniques must be used to carry out such a probe. Among all the methodologies that one can face in the literature, those based on wavelets are providing one of the most interesting insights to the problem. Their ability to explore several scales keeping, at the same time, spatial information of the CMB, is a very useful property to discriminate among possible sources of anisotropy and/or non-Gaussianity.
    Proceedings of SPIE - The International Society for Optical Engineering 01/2007; DOI:10.1117/12.733108 · 0.20 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014