Model-Independent Determination of the WIMP Mass from Direct Dark Matter Detection Data

Journal of Cosmology and Astroparticle Physics (Impact Factor: 5.88). 05/2008; DOI: 10.1088/1475-7516/2008/06/012
Source: arXiv

ABSTRACT Weakly Interacting Massive Particles (WIMPs) are one of the leading candidates for Dark Matter. We develop a model-independent method for determining the mass $m_\chi$ of the WIMP by using data (i.e., measured recoil energies) of direct detection experiments. Our method is independent of the as yet unknown WIMP density near the Earth, of the form of the WIMP velocity distribution, as well as of the WIMP-nucleus cross section. However, it requires positive signals from at least two detectors with different target nuclei. In a background-free environment, $m_\chi \sim 50$ GeV could in principle be determined with an error of $\sim 35%$ with only $2 \times 50$ events; in practice upper and lower limits on the recoil energy of signal events, imposed to reduce backgrounds, can increase the error. The method also loses precision if $m_\chi$ significantly exceeds the mass of the heaviest target nucleus used.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fitting the model "A" to dark matter direct detection data, when the model that underlies the data is "B", introduces a theoretical bias in the fit. We perform a quantitative study of the theoretical bias in dark matter direct detection, with a focus on assumptions regarding the dark matter interactions, and velocity distribution. We address this problem within the effective theory of isoscalar dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle. We analyze 24 benchmark points in the parameter space of the theory, using frequentist and Bayesian statistical methods. First, we simulate the data of future direct detection experiments assuming a momentum/velocity dependent dark matter-nucleon interaction, and an anisotropic dark matter velocity distribution. Then, we fit a constant scattering cross section, and an isotropic Maxwell-Boltzmann velocity distribution to the simulated data, thereby introducing a bias in the analysis. The best fit values of the dark matter particle mass differ from their benchmark values up to 2 standard deviations. The best fit values of the dark matter-nucleon coupling constant differ from their benchmark values up to several standard deviations. We conclude that common assumptions in dark matter direct detection are a source of potentially significant bias.
    Journal of Cosmology and Astroparticle Physics 07/2014; 2014(09). DOI:10.1088/1475-7516/2014/09/049 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose an improved method to study recent and near-future dark matter direct detection experiments with small numbers of observed events. Our method determines in a quantitative and halo-independent way whether the experiments point towards a consistent dark matter signal and identifies the best-fit dark matter parameters. To achieve true halo independence, we apply a recently developed method based on finding the velocity distribution that best describes a given set of data. For a quantitative global analysis we construct a likelihood function suitable for small numbers of events, which allows us to determine the best-fit particle physics properties of dark matter considering all experiments simultaneously. Based on this likelihood function we propose a new test statistic that quantifies how well the proposed model fits the data and how large the tension between different direct detection experiments is. We perform Monte Carlo simulations in order to determine the probability distribution function of this test statistic and to calculate the $p$-value for both the dark matter hypothesis and the background-only hypothesis.
    Journal of Cosmology and Astroparticle Physics 09/2014; 2014(12). DOI:10.1088/1475-7516/2014/12/052 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we investigate the modification of our expressions developed for the model-independent data analysis procedure of the reconstruction of the (time-averaged) one-dimensional velocity distribution of Galactic Weakly Interacting Massive Particles (WIMPs) with a non-negligible experimental threshold energy. Our numerical simulations show that, for a minimal reconstructable velocity of as high as O(200) km/s, our model-independent modification of the estimator for the normalization constant could provide precise reconstructed velocity distribution points to match the true WIMP velocity distribution with a <~ 10% bias.

Preview (2 Sources)

Available from