COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses VII. Time delays and the Hubble constant from WFI J2033-4723

Astronomy and Astrophysics (Impact Factor: 5.08). 03/2008; DOI: 10.1051/0004-6361:200809866
Source: arXiv

ABSTRACT Gravitationally lensed quasars can be used to map the mass distribution in lensing galaxies and to estimate the Hubble constant H0 by measuring the time delays between the quasar images. Here we report the measurement of two independent time delays in the quadruply imaged quasar WFI J2033-4723 (z = 1.66). Our data consist of R-band images obtained with the Swiss 1.2 m EULER telescope located at La Silla and with the 1.3 m SMARTS telescope located at Cerro Tololo. The light curves have 218 independent epochs spanning 3 full years of monitoring between March 2004 and May 2007, with a mean temporal sampling of one observation every 4th day. We measure the time delays using three different techniques, and we obtain Dt(B-A) = 35.5 +- 1.4 days (3.8%) and Dt(B-C) = 62.6 +4.1/-2.3 days (+6.5%/-3.7%), where A is a composite of the close, merging image pair. After correcting for the time delays, we find R-band flux ratios of F_A/F_B = 2.88 +- 0.04, F_A/F_C = 3.38 +- 0.06, and F_A1/F_A2 = 1.37 +- 0.05 with no evidence for microlensing variability over a time scale of three years. However, these flux ratios do not agree with those measured in the quasar emission lines, suggesting that longer term microlensing is present. Our estimate of H0 agrees with the concordance value: non-parametric modeling of the lensing galaxy predicts H0 = 67 +13/-10 km s-1 Mpc-1, while the Single Isothermal Sphere model yields H0 = 63 +7/-3 km s-1 Mpc-1 (68% confidence level). More complex lens models using a composite de Vaucouleurs plus NFW galaxy mass profile show twisting of the mass isocontours in the lensing galaxy, as do the non-parametric models. As all models also require a significant external shear, this suggests that the lens is a member of the group of galaxies seen in field of view of WFI J2033-4723. Comment: 14 pages, 12 figures, published in A&A

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microlensing perturbations to the flux ratios of gravitationally lensed quasar images can vary with wavelength because of the chromatic dependence of the accretion disk's apparent size. Multiwavelength observations of microlensed quasars can thus constrain the temperature profiles of their accretion disks, a fundamental test of an important astrophysical process which is not currently possible using any other method. We present single-epoch broadband flux ratios for 12 quadruply lensed quasars in eight bands ranging from 0.36 to 2.2 microns, as well as Chandra 0.5--8 keV flux ratios for five of them. We combine the optical/IR and X-ray ratios, together with X-ray ratios from the literature, using a Bayesian approach to constrain the half-light radii of the quasars in each filter. Comparing the overall disk sizes and wavelength slopes to those predicted by the standard thin accretion disk model, we find that on average the disks are larger than predicted by nearly an order of magnitude, with sizes that grow with wavelength with an average slope of ~0.2 rather than the slope of 4/3 predicted by the standard thin disk theory. Though the error bars on the slope are large for individual quasars, the large sample size lends weight to the overall result. Our results present severe difficulties for a standard thin accretion disk as the main source of UV/optical radiation from quasars.
    The Astrophysical Journal 07/2010; 729. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Strong lensing is a powerful tool to address three major astrophysical issues: understanding the spatial distribution of mass at kpc and sub-kpc scale, where baryons and dark matter interact to shape galaxies as we see them; determining the overall geometry, content, and kinematics of the universe; studying distant galaxies, black holes, and active nuclei that are too small or too faint to be resolved or detected with current instrumentation. After summarizing strong gravitational lensing fundamentals, I present a selection of recent important results. I conclude by discussing the exciting prospects of strong gravitational lensing in the next decade. Comment: ARA&A Vol 48 in press; preprint version prepared by the author.
    Annual Review of Astronomy and Astrophysics 03/2010; · 23.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The current standard time delay formula (CSTD) in gravitational lensing and its claimed relation to the lens equation through Fermat's principle (least time principle) have been puzzling to the author for some time. We find that the so-called geometric path difference term of the CSTD is an error, and it causes a double counting of the correct time delay. We examined the deflection angle and the time delay of a photon trajectory in the Schwarzschild metric that allows exact perturbative calculations in the gravitational parameter $GM$ in two coordinate systems -- the standard Schwarzschild coordinate system and the isotropic Schwarzschild coordinate system. We identify a coordinate dependent term in the time delay which becomes irrelevant for the arrival time difference of two images. It deems necessary to sort out unambiguously what is what we measure. We calculate the second order corrections for the deflection angle and time delay. The CSTD does generate correct lens equations including multiple scattering lens equations under the variations and may be best understood as a generating function. It is presently unclear what the significance is. We call to reanalyze the existing strong lensing data with time delays.

Full-text (2 Sources)

Available from
May 30, 2014