Article

BCS-BEC Crossover of a Quasi-two-dimensional Fermi Gas: the Significance of Dressed Molecules

Physical Review A (Impact Factor: 2.99). 04/2008; DOI: 10.1103/PhysRevA.77.063613
Source: arXiv

ABSTRACT We study the crossover of a quasi-two-dimensional Fermi gas trapped in the radial plane from the Bardeen-Cooper-Schrieffer (BCS) regime to the Bose-Einstein condensation (BEC) regime by crossing a wide Feshbach resonance. We consider two effective two-dimensional Hamiltonians within the mean-field level, and calculate the zero-temperature cloud size and number density distribution. For a model 1 Hamiltonian with renormalized atom-atom interaction, we observe a constant cloud size for arbitrary detunings. For a model 2 Hamiltonian with renormalized interactions between atoms and dressed molecules, the cloud size deceases from the BCS to BEC side, which is consistent with the picture of BCS-BEC crossover. This qualitative discrepancy between the two models indicates that the inclusion of dressed molecules is essential for a mean-field description of quasi-two-dimensional Fermi systems, especially on the BEC side of the Feshbach resonance.

0 Bookmarks
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the properties of a spin-orbit coupled quasi-two-dimensional Fermi gas with tunable s-wave interaction between the two spin species. By analyzing the two-body bound state, we find that the population of the excited states in the tightly confined axial direction can be significant when the two-body binding energy becomes comparable to or exceeds the axial confinement. Since the Rashba spin-orbit coupling that we study here tends to enhance the two-body binding energy, this effect can become prominent at unitarity or even on the BCS side of the Feshbach resonance. To study the impact of these excited modes along the third dimension, we adopt an effective two-dimensional Hamiltonian in the form of a two-channel model, where the dressed molecules in the closed channel consist of the conventional Feshbach molecules as well as the excited states occupation in the axial direction. With properly renormalized interactions between atoms and dressed molecules, we find that both the density distribution and the phase structure in the trap can be significantly modified near a wide Feshbach resonance. In particular, the stability region of the topological superfluid phase is increased. Our findings provide a proper description for a quasi-two-dimensional Fermi gas under spin-orbit coupling, and are helpful for the experimental search for the topological superfluid phase in ultracold Fermi gases.
    Physical Review A 03/2013; 87(3). · 2.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We follow the evolution of fermion pairing in the dimensional crossover from three-dimensional to two-dimensional as a strongly interacting Fermi gas of ^{6}Li atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to the opening of a gap in radio-frequency spectra, even on the Bardeen-Cooper-Schrieffer side of a Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical two-body binding energy and, in the two-dimensional limit, the zero-temperature mean-field Bose-Einstein-condensation to Bardeen-Cooper-Schrieffer crossover theory.
    Physical Review Letters 01/2012; 108(4):045302. · 7.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the properties of a spin-orbit coupled quasi-two-dimensional Fermi gas with tunable s-wave interaction between the two spin species. By analyzing the two-body bound state, we find that the population of the excited states in the tightly-confined axial direction can be significant when the two-body binding energy becomes comparable or exceeds the axial confinement. Since the Rashba spin-orbit coupling that we study here tends to enhance the two-body binding energy, this effect can become prominent at unitarity or even on the BCS side of the Feshbach resonance. To study the impact of these excited modes along the third dimension, we adopt an effective two-dimensional Hamiltonian in the form of a two-channel model, where the dressed molecules in the closed channel consist of the conventional Feshbach molecules as well as the excited states occupation in the axial direction. With properly renormalized interactions between atoms and dressed molecules, we find that both the density distribution and the phase structure in the trap can be significantly modified near a wide Feshbach resonance. In particular, the stability region of the topological superfluid phase is increased. Our findings are helpful for the experimental search for the topological superfluid phase in ultra-cold Fermi gases, and have interesting implications for quasi-low-dimensional polarized Fermi gases in general.
    09/2012;

Full-text

Download
1 Download
Available from