Article

Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates.

Journal of Biological Chemistry (Impact Factor: 4.65). 07/1969; 244(12):3290-302.
Source: PubMed
0 Bookmarks
 · 
300 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
    Physiological Reviews 10/2011; 91(4):1447-531. · 30.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphorus nuclear magnetic resonance spectroscopy was used to evaluate the impact of experimental reductions of intracellular pH on in vitro preparations of the radula protractor muscle of the marine gastropod, Busycon canaliculatum. The intracellular pH of radula refractor muscle bundles superfused with buffered artificial sea water (pH = 7.8) was 7.29. It was possible to clamp muscle intracellular pH at various acidotic states by changing the superfusate to 5, 10, and 15 mmol.l-1 5,5-dimethyl-oxazolidine-2,4-dione in buffered artificial sea water (pH = 6.5). Consistent and temporally stable reductions of intracellular pH were achieved (intracellular pH = 6.98, 6.79, and 6.62, respectively). During the acidotic transitions, arginine phosphate concentrations decreased and inorganic phosphate concentrations increased in a reciprocal manner and remained essentially constant after the intracellular pH stabilized. The extent of changes in arginine phosphate and inorganic phosphate was directly proportional to the magnitude of the imposed acidosis. Total adenosine triphosphate concentrations remained unchanged in all treatments. However, the magnesium adenosine triphosphate to total adenosine triphosphate ratio declined in direct relation to the extent of the acidosis. Intracellular free Mg2+ fell incrementally with reduced intracellular pH. All of the above effects were rapidly reversed when the 5,5-dimethyl-oxazolidine-2,4-dione was washed out by changing the superfusate to buffered artificial sea water (pH = 7.8). Mg-adenosine diphosphate concentrations were calculated in all treatments using equilibrium constants for the arginine kinase reaction corrected for pH and intracellular free [Mg2+]. The metabolite, intracellular pH, and [Mg2+] data were used to estimate the effective free energy of hydrolysis of adenosine triphosphate (dG/d xi ATP) under most experimental conditions. Experimental acidosis resulted in dramatic reductions in dG/d xi ATP which were fully reversible upon wash-out of 5,5-dimethyl-dioxazolidine-2,4-dione and recovery to normal intracellular pH conditions. Acidosis resulted in net hydrolysis of arginine phosphate, likely via a complex mechanism involving enhancement of rate of adenosine triphosphate hydrolysis and/or inhibition of adenosine triphosphate synthesis.
    Journal of Comparative Physiology B 02/1995; 165(3):203-12. · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article is an overview of current research in the area of sulfate activation. Emphasis is placed on presenting unresolved issues in an appropriate context for critical evaluation by the reader. The energetics of sulfate activation is reevaluated in light of recent findings that demonstrate that the synthesis of activated sulfate is thermodynamically driven by GTP hydrolysis. The structural and functional bases of this GTPase activation are discussed in detail. The bonding and hydrolysis of the high-energy, phosphoric-sulfuric acid anhydride bond of activated sulfate are presented along with an analysis of the importance of the divalent cation and pyrophosphate protonation in the equilibria governing activated sulfate formation. The molecular genetics of sulfate assimilation in prokaryotes is reviewed with an emphasis on the regulation of the pathway. Recent discoveries connecting sulfate activation to plant/microbe symbiogenesis are presented, as are several examples of the importance of activated sulfate in human metabolism and disease.
    Critical Reviews in Biochemistry and Molecular Biology 02/1993; 28(6):515-42. · 5.58 Impact Factor

Full-text

View
4 Downloads
Available from