Article

CCD BV survey of 42 open clusters

Astronomy and Astrophysics (Impact Factor: 4.48). 04/2007; DOI: 10.1051/0004-6361:20066588
Source: arXiv

ABSTRACT We present results of a photometric survey whose aim was to derive structural and astrophysical parameters for 42 open clusters. While our sample is definitively not representative of the total open cluster sample in the Galaxy, it does cover a wide range of cluster parameters and is uniform enough to allow for simple statistical considerations. BV wide-field CCD photometry was obtained for open clusters for which photometric, structural, and dynamical evolution parameters were determined. The limiting and core radii were determined by analyzing radial density profiles. The ages, reddenings, and distances were obtained from the solar metallicity isochrone fitting. The mass function was used to study the dynamical state of the systems, mass segregation effect and to estimate the total mass and number of cluster members. This study reports on the first determination of basic parameters for 11 out of 42 observed open clusters. The angular sizes for the majority of the observed clusters appear to be several times larger than the catalogue data indicate. The core and limiting cluster radii are correlated and the latter parameter is 3.2 times larger on average. The limiting radius increases with the cluster's mass, and both the limiting and core radii decrease in the course of dynamical evolution. For dynamically not advanced clusters, the mass function slope is similar to the universal IMF slope. For more evolved systems, the effect of evaporation of low-mass members is clearly visible. The initial mass segregation is present in all the observed young clusters, whereas the dynamical mass segregation appears in clusters older than about log(age)=8. Low-mass stars are deficient in the cores of clusters older than log(age)=8.5 and not younger than one relaxation time. Comment: 13 pages, 8 figures

0 Followers
 · 
160 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present work, we used the near-infrared JHK(s) photometric data from the 2-Micron All Sky Survey (2MASS) to determine the morphological and photometric parameters for two rarely studied open star clusters; King 13 and Berkeley 53. Luminosity function, mass function and dynamical relaxation time have been determined for the two clusters. We estimated the distances of 2.11 +/- 0.25 Kpc and 3.51 +/- 0.21 Kpc for King 13 and Berkeley 53 respectively, and both clusters have the same age 1.00 +/- 0.12 Gyr at solar metallicity; z=0.019.
    08/2014; 352(2):248. DOI:10.1007/s10509-014-1990-z
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a catalogue of 247 photometrically and spectroscopically confirmed fainter classical Be stars (13 < r < 16) in the direction of the Perseus Arm of the Milky Way (-1 < b < +4, 120 < l < 140). The catalogue consists of 181 IPHAS-selected new classical Be stars, in addition to 66 objects that were studied by Raddi et al. (2013) more closely, and 3 stars identified as classical Be stars in earlier work. This study more than doubles the number known in the region. Photometry spanning 0.6 to 5 micron, spectral types, and interstellar reddenings are given for each object. The spectral types were determined from low-resolution spectra (lambda / Delta-lambda ~ 800-2000), to a precision of 1-3 subtypes. The interstellar reddenings are derived from the (r - i) colour, using a method that corrects for circumstellar disc emission. The colour excesses obtained range from E(B-V) = 0.3 up to 1.6 - a distribution that modestly extends the range reported in the literature for Perseus-Arm open clusters. For around half the sample, the reddenings obtained are compatible with measures of the total sightline Galactic extinction. Many of these are likely to lie well beyond the Perseus Arm.
    Monthly Notices of the Royal Astronomical Society 10/2014; 446(1). DOI:10.1093/mnras/stu2090 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present ASteCA (Automated Stellar Cluster Analysis), a suit of tools designed to fully automatize the standard tests applied on stellar clusters to determine their basic parameters. The set of functions included in the code make use of positional and photometric data to obtain precise and objective values for a given cluster's center coordinates, radius, luminosity function and integrated color magnitude, as well as characterizing through a statistical estimator its probability of being a true physical cluster rather than a random overdensity of field stars. ASteCA incorporates a Bayesian field star decontamination algorithm capable of assigning membership probabilities using photometric data alone. An isochrone fitting process based on the generation of synthetic clusters from theoretical isochrones and selection of the best fit through a genetic algorithm is also present, which allows ASteCA to provide accurate estimates for a cluster's metallicity, age, extinction and distance values along with its uncertainties. To validate the code we applied it on a large set of over 400 synthetic MASSCLEAN clusters with varying degrees of field star contamination as well as a smaller set of 20 observed Milky Way open clusters (Berkeley 7, Bochum 11, Czernik 26, Czernik 30, Haffner 11, Haffner 19, NGC 133, NGC 2236, NGC 2264, NGC 2324, NGC 2421, NGC 2627, NGC 6231, NGC 6383, NGC 6705, Ruprecht 1, Tombaugh 1, Trumpler 1, Trumpler 5 and Trumpler 14) studied in the literature. The results show that ASteCA is able to recover cluster parameters with an acceptable precision even for those clusters affected by substantial field star contamination. ASteCA is written in Python and is made available as an open source code which can be downloaded ready to be used from it's official site.
    Astronomy and Astrophysics 12/2014; 576. DOI:10.1051/0004-6361/201424946 · 4.48 Impact Factor

Full-text (2 Sources)

Download
67 Downloads
Available from
May 22, 2014

Similar Publications