Article

Kondo Effects in Carbon Nanotubes: From SU(4) to SU(2) symmetry

Korea Institute for Advanced Study, Sŏul, Seoul, South Korea
Physical Review B (Impact Factor: 3.66). 08/2006; 74(20). DOI: 10.1103/PhysRevB.74.205119
Source: arXiv

ABSTRACT We study the Kondo effect in a single-electron transistor device realized in a single-wall carbon nanotube. The K-K' double orbital degeneracy of a nanotube, which originates from the peculiar two-dimensional band structure of graphene, plays the role of a pseudo-spin. Screening of this pseudo-spin, together with the real spin, can result in an SU(4) Kondo effect at low temperatures. For such an exotic Kondo effect to arise, it is crucial that this orbital quantum number is conserved during tunneling. Experimentally, this conservation is not obvious and some mixing in the orbital channel may occur. Here we investigate in detail the role of mixing and asymmetry in the tunneling coupling and analyze how different Kondo effects, from the SU(4) symmetry to a two-level SU(2) symmetry, emerge depending on the mixing and/or asymmetry. We use four different theoretical approaches to address both the linear and non-linear conductance for different values of the external magnetic field. Our results point out clearly the experimental conditions to observe exclusively SU(4) Kondo physics. Although we focus on nanotube quantum dots, our results also apply to vertical quantum dots. We also mention that a finite amount of orbital mixing corresponds, in the pseudospin language, to having non-collinear leads with respect to the orbital ''magnetization'' axis which defines the two pseudospin orientations in the nanotube quantum dot. In this sense, some of our results are also relevant to the problem of a Kondo quantum dot coupled to non-collinear ferromagnetic leads. Comment: 17 pages, 15 figures; Updated references, fig13 corrected, typos corrected; to appear in Phys. Rev. B

Download full-text

Full-text

Available from: Ramon Aguado, Nov 16, 2012
0 Followers
 · 
177 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cette thèse a pour objet l'étude du transport électronique dans les nanotubes de carbone monoparois par l'intermédiaire des fluctuations du courant. L'étude se place dans le cadre de la physique mésoscopique dans des conducteurs balistiques. Dans ce type de conducteur, plusieurs régimes diff´erents peuvent apparaître : blocage de Coulomb, transport modulé par les interférences quantiques, effet Kondo. Nous avons étudié les fluctuations du courant dans un régime d'interféromètre de type Fabry-Pérot électronique qui se présente comme une situation id´eale afin de sonder le régime où l'effet des interactions est faible. Les fluctuations du courant ont été analysées dans le formalisme de Landauer-Büttiker et nous obtenons une bonne correspondance entre la théorie et l'expérience. Nous avons ainsi observé la suppression du bruit dans les régimes de transmission unitaire et, par le biais des données combinées de la conductance et du bruit, nous avons pu déterminer les transmissions pour des canaux de conduction non dégénérés. Par ailleurs, le régime de l'effet Kondo a fait l'objet d'une étude dans laquelle nous avons observé des comportements universels dans la conductance et le bruit. Nous avons ajusté ces différentes grandeurs avec une théorie de bosons esclaves de champ moyen. Finalement, nous avons étudié une configuration de type Hanbury Brown et Twiss : un nanotube monoparoi sur lequel nous avons déposé un multiparoi qui nous sert de sonde afin d'injecter des électrons sur le conducteur.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate a mesoscopic setup composed of a small electron droplet (dot) coupled to a larger quantum dot (grain) also subject to Coulomb blockade as well as two macroscopic leads used as source and drain. An exotic Kondo ground state other than the standard SU(2) Fermi liquid unambiguously emerges: an SU(4) Kondo correlated liquid. The transport properties through the small dot are analyzed for this regime, through boundary conformal field theory, and allow a clear distinction with other regimes such as a two-channel spin state or a two-channel orbital state. Comment: 13 pages, 3 figures
    Physical review. B, Condensed matter 09/2006; 75(3). DOI:10.1103/PhysRevB.75.035332
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerical calculations simulate transport experiments in carbon nanotube quantum dots (P. Jarillo-Herrero et al., Nature 434, 484 (2005)), where a strongly enhanced Kondo temperature T_K ~ 8K was associated with the SU(4) symmetry of the Hamiltonian at quarter-filling for an orbitally double-degenerate single-occupied electronic shell. Our results clearly suggest that the Kondo conductance measured for an adjacent shell with T_K ~ 16K, interpreted as a singlet-triplet Kondo effect, can be associated instead to an SU(4) Kondo effect at half-filling. Besides presenting spin-charge Kondo screening similar to the quarter-filling SU(4), the half-filling SU(4) has been recently associated to very rich physical behavior, including a non-Fermi-liquid state (M. R. Galpin et al., Phys. Rev. Lett. 94, 186406 (2005)).
    Physical review. B, Condensed matter 10/2006; 75(4). DOI:10.1103/PhysRevB.75.045406