Article

HETE-2 Localizations and Observations of Four Short Gamma-Ray Bursts: GRBs 010326B, 040802, 051211 and 060121

06/2006;
Source: arXiv

ABSTRACT Here we report the localizations and properties of four short-duration GRBs localized by the High Energy Transient Explorer 2 satellite (HETE-2): GRBs 010326B, 040802, 051211 and 060121, all of which were detected by the French Gamma Telescope (Fregate) and localized with the Wide-field X-ray Monitor (WXM) and/or Soft X-ray Camera (SXC) instruments. We discuss eight possible criteria for determining whether these GRBs are "short population bursts" (SPBs) or "long population bursts" (LPBs). These criteria are (1) duration, (2) pulse widths, (3) spectral hardness, (4) spectral lag, (5) energy Egamma radiated in gamma rays (or equivalently, the kinetic energy E_KE of the GRB jet), (6) existence of a long, soft bump following the burst, (7) location of the burst in the host galaxy, and (8) type of host galaxy. In particular, we have developed a likelihood method for determining the probability that a burst is an SPB or a LPB on the basis of its T90 duration alone. A striking feature of the resulting probability distribution is that the T90 duration at which a burst has an equal probability of being a SPB or a LPB is T90 = 5 s, not T90 = 2 s, as is often used. All four short-duration bursts discussed in detail in this paper have T90 durations in the Fregate 30-400 keV energy band of 1.90, 2.31, 4.25, and 1.97 sec, respectively, yielding probabilities P(S|T90) = 0.97, 0.91, 0.60, and 0.95 that these bursts are SPBs on the basis of their T90 durations alone. All four bursts also have spectral lags consistent with zero. These results provide strong evidence that all four GRBs are SPBs (abstract continues).

0 Bookmarks
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: From Galactic binary sources, to extragalactic magnetized neutron stars, to long-duration GRBs without associated supernovae, the types of sources we now believe capable of producing bursts of gamma-rays continues to grow apace. With this emergent diversity comes the recognition that the traditional (and newly formulated) high-energy observables used for identifying sub-classes does not provide an adequate one-to-one mapping to progenitors. The popular classification of some > 100 sec duration GRBs as ``short bursts'' is not only an unpalatable retronym and syntactically oxymoronic but highlights the difficultly of using what was once a purely phenomenological classification to encode our understanding of the physics that gives rise to the events. Here we propose a physically based classification scheme designed to coexist with the phenomenological system already in place and argue for its utility and necessity. Comment: 6 pages, 3 figures. Slightly expanded version of solicited paper to be published in the Proceedings of ''Gamma Ray Bursts 2007,'' Santa Fe, New Mexico, November 5-9. Edited by E. E. Fenimore, M. Galassi, D. Palmer
    04/2008;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-ray bursts (GRBs) are known to come in two duration classes, separated at approximately 2 s. Long-duration bursts originate from star-forming regions in galaxies, have accompanying supernovae when these are near enough to observe and are probably caused by massive-star collapsars. Recent observations show that short-duration bursts originate in regions within their host galaxies that have lower star-formation rates, consistent with binary neutron star or neutron star-black hole mergers. Moreover, although their hosts are predominantly nearby galaxies, no supernovae have been so far associated with short-duration GRBs. Here we report that the bright, nearby GRB 060614 does not fit into either class. Its approximately 102-s duration groups it with long-duration GRBs, while its temporal lag and peak luminosity fall entirely within the short-duration GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short-duration GRBs. This combination of a long-duration event without an accompanying supernova poses a challenge to both the collapsar and the merging-neutron-star interpretations and opens the door to a new GRB classification scheme that straddles both long- and short-duration bursts.
    Nature 01/2007; 444(7122):1044-6. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Open questions in GRB physics are summarized as of 2011, including classification, progenitor, central engine, ejecta composition, energy dissipation and particle acceleration mechanism, radiation mechanism, long term engine activity, external shock afterglow physics, origin of high energy emission, and cosmological setting. Prospects of addressing some of these problems with the upcoming Chinese-French GRB mission, SVOM, are outlined.
    Comptes Rendus Physique 04/2011; 12(3). · 1.82 Impact Factor

Full-text (2 Sources)

View
24 Downloads
Available from
May 16, 2014