XY frustrated systems: Continuous exponents in discontinuous phase transitions

Université Paris-Sud 11, Orsay, Île-de-France, France
Physical review. B, Condensed matter (Impact Factor: 3.66). 07/2001; 67(13). DOI: 10.1103/PhysRevB.67.134422
Source: arXiv


XY frustrated magnets exhibit an unsual critical behavior: they display scaling laws accompanied by nonuniversal critical exponents and a negative anomalous dimension. This suggests that they undergo weak first order phase transitions. We show that all perturbative approaches that have been used to investigate XY frustrated magnets fail to reproduce these features. Using a nonperturbative approach based on the concept of effective average action, we are able to account for this nonuniversal scaling and to describe qualitatively and, to some extent, quantitatively the physics of these systems. Comment: 11 pages, 3 figures, revised and extended version

2 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cette thèse de doctorat présente la détermination théorique et numérique (Monte Carlo) du diagramme de phase du système classique antiferromagnétique de Heisenberg sur réseau triangulaire (HAFT) et de ses variantes anisotropes. Sous champ HAFT présente une intri- cation non triviale des symétries discrète Z3 et continue S1. Elles sont successivement brisées (discrète puis continue) selon des modalités différentes à champ fort et modéré : dans ce cas-là l'ordre a lieu selon la direction transverse ; dans ce cas-ci une phase colinéaire intermédiaire est stabilisée avant la phase à 120 degrés. Du fait du comportement à champ nul les lignes de transitions se terminent à (T , h) = (0, 0). L'anisotropie mono-ionique est ici considérée. HAFT avec anisotropie d'axe facile pour une anisotropie modérée, 0 < d
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two models of classic XY antiferromagnets in three dimensions are studied by Monte Carlo simulation: the model on a simple cubic lattice with two extra intralayer exchanges and the model on a stackedtriangular lattice with an extra interlayer exchange. In suggested models, the order parameters are magnetization and two chiral parameters. A transition corresponds to breaking ℤ2 ⊗ ℤ2 ⊗ SO(2) symmetry. A distinct first order transition is found in both models.
    Journal of Experimental and Theoretical Physics 10/2011; 113(4). DOI:10.1134/S1063776111100074 · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We review results concerning the critical behavior of spin systems at equilibrium. We consider the Ising and the general O($N$)-symmetric universality classes, including the $N\to 0$ limit that describes the critical behavior of self-avoiding walks. For each of them, we review the estimates of the critical exponents, of the equation of state, of several amplitude ratios, and of the two-point function of the order parameter. We report results in three and two dimensions. We discuss the crossover phenomena that are observed in this class of systems. In particular, we review the field-theoretical and numerical studies of systems with medium-range interactions. Moreover, we consider several examples of magnetic and structural phase transitions, which are described by more complex Landau-Ginzburg-Wilson Hamiltonians, such as $N$-component systems with cubic anisotropy, O($N$)-symmetric systems in the presence of quenched disorder, frustrated spin systems with noncollinear or canted order, and finally, a class of systems described by the tetragonal Landau-Ginzburg-Wilson Hamiltonian with three quartic couplings. The results for the tetragonal Hamiltonian are original, in particular we present the six-loop perturbative series for the $\beta$-functions. Finally, we consider a Hamiltonian with symmetry $O(n_1)\oplus O(n_2)$ that is relevant for the description of multicritical phenomena.
    Physics Reports 01/2001; 368(6). DOI:10.1016/S0370-1573(02)00219-3 · 20.03 Impact Factor
Show more


2 Reads
Available from