Vibrational Instability due to Coherent Tunneling of Electrons

EPL (Europhysics Letters) (Impact Factor: 2.26). 04/2001; DOI: 10.1209/epl/i2002-00611-3
Source: arXiv

ABSTRACT Effects of a coupling between the mechanical vibrations of a quantum dot placed between the two leads of a single electron transistor and coherent tunneling of electrons through a single level in the dot has been studied. We have found that for bias voltages exceeding a certain critical value a dynamical instability occurs and mechanical vibrations of the dot develop into a stable limit cycle. The current-voltage characteristics for such a transistor were calculated and they seem to be in a reasonably good agreement with recent experimental results for the single $C_{60}$-molecule transistor by Park et al.(Nature {\bf 407,} (2000) 57). Comment: 5 pages, 3 figures

  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanoelectromechanical effects in superconducting weak links are considered. Three different superconducting devices are studied: (i) a single-Cooper-pair transistor, (ii) a transparent SNS junction, and (iii) a single-level quantum dot coupled to superconducting electrodes. The electromechanical coupling is due to electrostatic or magnetomotive forces acting on a movable part of the device. It is demonstrated that depending on the frequency of mechanical vibrations the electromechanical coupling could either suppress or enhance the Josephson current. Nonequilibrium effects associated with cooling of the vibrational subsystem or pumping energy into it at low bias voltages are discussed.
    Low Temperature Physics 04/2012; 38(4):273-282. · 0.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A two-dimensional model system of an electromechanical single electron transistor with strong dissipation is investigated by using Monte Carlo method. The island vibrates not only between the drain electrode and the source electrode, but also between the gate electrode and the back-gate electrode. A simple and effective method is applied to estimate the trend of the current curves, by analyzing the average electrostatic forces.
    Physics Letters A 03/2006; 351:338-342. · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this review we discuss how the nano-electro-mechanical properties of a superconducting weak link, formed by a suspended nanowire bridging two superconductors, can strongly affect mesoscopic effects in both the electronic and the mechanical subsystem. In particular we will discuss how quantum coherence and electron–electron (Coulomb) correlations may result in the possibility to resonantly redistribute energy between the electronic and mechanical degrees of freedom, allowing controllable switching between pumping and cooling of the nano-mechanical vibrations of the suspended nanowire. The two regimes of a given current and a given voltage supplied to the nano-electro-mechanical weak link is considered, resulting respectively in the possibility of ground-state cooling or resonant generation of nano-mechanical vibrations for realistic experimental parameters.RésuméDans cet article nous décrivons comment les propriétés nano-électromécaniques dʼune connexion faible formée par un nanofil suspendu entre deux supreconducteurs, peut fortement affecter les effets mésoscopiques dans le sous-système électronique comme dans le sous-système. Nous décrirons en particulier comment la cohérence quantique et les corrélations de Coulomb entre électrons peuvent rendre possible une redistribution résonante de lʼénergie entre les degrés de liberté électroniques et mécaniques, permettant dʼalterner de façon contrôlée le pompage et le refroidissement des vibrations nano-mécaniques du nanofil. On considère deux régimes dans lesquels on fixe soit le courant, soit la tension agissant sur la connexion nano-électromécanique, le résultat étant respectivement un refroidissement dans lʼétat fondamental ou la génération résonante de vibrations nano-mécaniques, obtenus pour des paramètres expérimentaux réaliste.
    Comptes Rendus Physique 06/2012; 13(5):426–439. · 1.82 Impact Factor


Available from