The spin of accreting stars: dependence on magnetic coupling to the disc

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.52). 09/2004; DOI: 10.1111/j.1365-2966.2004.08431.x
Source: arXiv

ABSTRACT We formulate a general, steady-state model for the torque on a magnetized star from a surrounding accretion disc. For the first time, we include the opening of dipolar magnetic field lines due to the differential rotation between the star and disc, so the magnetic topology then depends on the strength of the magnetic coupling to the disc. This coupling is determined by the effective slip rate of magnetic field lines that penetrate the diffusive disc. Stronger coupling (i.e., lower slip rate) leads to a more open topology and thus to a weaker magnetic torque on the star from the disc. In the expected strong coupling regime, we find that the spin-down torque on the star is more than an order of magnitude smaller than calculated by previous models. We also use our general approach to examine the equilibrium (`disc-locked') state, in which the net torque on the star is zero. In this state, we show that the stellar spin rate is roughly an order of magnitude faster than predicted by previous models. This challenges the idea that slowly-rotating, accreting protostars are disc locked. Furthermore, when the field is sufficiently open (e.g., for mass accretion rates > 5 x 10^{-9} M_sun / yr, for typical accreting protostars), the star will receive no magnetic spin-down torque from the disc at all. We therefore conclude that protostars must experience a spin-down torque from a source that has not yet been considered in the star-disc torque models--possibly from a stellar wind along the open field lines. Comment: Accepted by MNRAS

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper examines the outflows associated with the interaction of a stellar magnetosphere with an accretion disk. In particular, we investigate the magnetospheric ejections (MEs) due to the expansion and reconnection of the field lines connecting the star with the disk. Our aim is to study the dynamical properties of the outflows and evaluate their impact on the angular momentum evolution of young protostars. Our models are based on axisymmetric time-dependent magneto-hydrodynamic simulations of the interaction of the dipolar magnetosphere of a rotating protostar with a viscous and resistive disk, using alpha prescriptions for the transport coefficients. Our simulations are designed in order to model: the accretion process and the formation of accretion funnels; the periodic inflation/reconnection of the magnetosphere and the associated MEs; the stellar wind. Similarly to a magnetic slingshot, MEs can be powered by the rotation of both the disk and the star so that they can efficiently remove angular momentum from both. Depending on the accretion rate, MEs can extract a relevant fraction of the accretion torque and, together with a weak but non-negligible stellar wind torque, can balance the spin-up due to accretion. When the disk truncation approaches the corotation radius, the system enters a "propeller" regime, where the torques exerted by the disk and the MEs can even balance the spin-up due to the stellar contraction. The MEs spin-down efficiency can be compared to other scenarios, such as the Ghosh & Lamb, X-wind or stellar wind models. Nevertheless, for all scenarios, an efficient spin-down torque requires a rather strong dipolar component, which has been seldom observed in classical T Tauri stars. A better analysis of the torques acting on the protostar must take into account non-axisymmetric and multipolar magnetic components consistent with observations.
    Astronomy and Astrophysics 11/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of giant gaseous planets that reside in close proximity to their host stars may be a consequence of large-scale radial migration through the proto-planetary nebulae. Within the context of this picture, significant orbital obliquities characteristic of a substantial fraction of such planets can be attributed to external torques that perturb the disks out of alignment with the spin axes of their host stars. Therefore, the acquisition of orbital obliquity exhibits sensitive dependence on the physics of disk-star interactions. Here, we analyze the primordial excitation of spin-orbit misalignment of Sun-like stars, in light of disk-star angular momentum transfer. We begin by calculating the stellar pre-main sequence rotational evolution, accounting for spin-up due to gravitational contraction and accretion as well as spin-down due to magnetic star-disk coupling. We devote particular attention to angular momentum transfer by accretion, and show that while generally subdominant to gravitational contraction, this process is largely controlled by the morphology of the stellar magnetic field (i.e. specific angular momentum accreted by stars with octupole-dominated surface fields is smaller than that accreted by dipole-dominated stars by an order of magnitude). Subsequently, we examine the secular spin-axis dynamics of disk-bearing stars, accounting for the time-evolution of stellar and disk properties and demonstrate that misalignments are preferentially excited in systems where stellar rotation is not overwhelmingly rapid. Moreover, we show that the excitation of spin-orbit misalignment occurs impulsively, through an encounter with a resonance between the stellar precession frequency and the disk-torquing frequency. Cumulatively, the model developed herein opens up a previously unexplored avenue towards understanding star-disk evolution and its consequences in a unified manner.
    The Astrophysical Journal 10/2013; 778(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Classical T Tauri stars are low mass young forming stars that are surrounded by a circumstellar accretion disc from which they gain mass. Despite this accretion and their own contraction that should both lead to their spin up, these stars seem to conserve instead an almost constant rotational period as long as the disc is maintained. Several scenarios have been proposed in the literature in order to explain this puzzling "disc-locking" situation: either deposition in the disc of the stellar angular momentum by the stellar magnetosphere or its ejection through winds, providing thereby an explanation of jets from Young Stellar Objects. In this lecture, these various mechanisms will be critically detailed, from the physics of the star-disc interaction to the launching of self-confined jets (disc winds, stellar winds, X-winds, conical winds). It will be shown that no simple model can account alone for the whole bulk of observational data and that "disc locking" requires a combination of some of them.
    EAS Publications Series 10/2013;