Ballistic limits of tissue and clothing.

Annals of the New York Academy of Sciences (Impact Factor: 4.38). 11/1968; 152(1):163-7. DOI: 10.1111/j.1749-6632.1968.tb11973.x
Source: PubMed
  • [Show abstract] [Hide abstract]
    ABSTRACT: Explosively propelled fragments are the most common cause of injury to soldiers on current operations. Researchers desire models to predict their injurious effects so as to refine methods of potential protection. Well validated physical and numerical models based on the penetration of standardised fragment simulating projectiles (FSPs) through muscle exist but not for skin, thereby reducing the utility of such models. A systematic review of the literature was undertaken using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology to identify all open source information quantifying the effects of postmortem human subject (PMHS) and animal skin on the retardation of metallic projectiles. Projectile sectional density (mass over presented cross-sectional area) was compared with the velocity required for skin perforation or penetration, with regard to skin origin (animal vs PMHS), projectile shape (sphere vs cylinder) and skin backing (isolated skin vs that backed by muscle). 17 original experimental studies were identified, predominantly using skin from the thigh. No statistical difference in the velocity required for skin perforation with regard to skin origin or projectile shape was found. A greater velocity was required to perforate intact skin on a whole limb than isolated skin alone (p<0.05). An empirical relationship describing the velocity required to perforate skin by metallic FSPs of a range of sectional densities was generated. Skin has a significant effect on the retardation of FSPs, necessitating its incorporation in future injury models. Perforation algorithms based on animal and PMHS skin can be used interchangeably as well as spheres and cylinders of matching sectional density. Future numerical simulations for skin perforation must match the velocity for penetration and also require experimental determination of mechanical skin properties, such as tensile strength, strain and elasticity at high strain rates.
    Journal of the Royal Army Medical Corps 06/2013; · 0.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ballistic gelatin is well validated in its ability to simulate the retardation of bullets into homogenous muscle. However the relationship is less clear for fragmentation projectiles and non-homogenous tissues as would truly be found in a human. 0.16 g, 1.10 g and 2.84 g NATO standardised cylindrical Fragment Simulating Projectiles (FSPs) were fired at a range of velocities (112-1652 m s(-1)) into four body areas (thigh, abdomen, thorax or neck) of six pig cadavers as well as 20% gelatin. Cadavers were imaged by Computed Tomography (CT) scanning and FSP Depth of Penetration (DoP) ascertained through radiology followed by dissection by a forensic pathologist. 106/149 (71%) FSPs were retained in tissues enabling DoP measurements and 43/149 (29%) exited the subjects. There was significantly less retardation of FSPs in the thorax and abdomen compared to gelatin but no difference in retardation in leg and neck tissue compared to gelatin. Although the gradient appeared identical for the 2.84 g FSP as well, there were insufficient FSPs retained in the neck and leg for meaningful analysis to be undertaken. Porcine leg and neck muscle was demonstrated to be comparable to 20% ballistic gelatin in terms of retardation, validating the use of projectile penetration algorithms derived from this tissue simulant. The effect of pig skin was significant for the 0.16 g FSP, especially at lower velocities, and we would therefore suggest that specific algorithms for any future numerical injury models be based directly from animal data or validated skin simulants for this smaller sized FSP. Reproducing the retardation effects of FSPs in the thorax and abdomen using tissue simulants alone will be problematic due to the anatomical complexity as well as multiple tissue-air interfaces and we would recommend further research in this area.
    Journal of forensic and legal medicine 05/2013; 20(4):296-9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hydrogels prepared from water solutions containing 10-20 mass% gelatine are generally accepted muscle tissue simulants in terminal ballistic research. They, however, do not have a surface layer which simulates the effect of human skin. The purpose of this research was to find a suitable skin simulant for enhancing the testing fidelity and the credibility of the results with gelatine-based materials when assessing the injury potential of not only high energy bullets, but also especially that of non-penetrating "less lethal" kinetic impact ammunition and relatively low energy ricochet fragments. A skin simulant also permits the simulation and assessment of exit wounds. The mechanical and ballistic properties of human skin and target simulant were established on the basis of results found in the literature. Some errors in these were found. The corrected values are included in this paper for comparison. The target values of the mechanical properties of the skin simulant were the following: threshold velocity v(th)=94+/-4 m/s, tensile strength 18+/-2 N/mm2 and elongation at break 65+/-5%. A selection of synthetic and natural materials was evaluated as skin simulants by analysing their mechanical and ballistic properties. The results were compared to literature values obtained with human cadavers. The tests showed that the best skin simulant of the ones evaluated was semi-finished chrome tanned upholstery "crust" cowhide of 0.9-1.1 mm nominal thickness. Its threshold velocity was 90.7 m/s, tensile strength 20.89+/-4.11 MPa and elongation at break 61+/-9%. These values are the same as the average values of human skin. Of the synthetic materials evaluated, 1mm thick natural rubber can be used on impact side as a threshold velocity filter with some reservations although its theoretical threshold velocity is only 82.9 m/s.
    Forensic Science International 06/2005; 150(1):63-71. · 2.31 Impact Factor