Article

The Role of Primordial Kicks on Black Hole Merger Rates

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.52). 10/2006; DOI: 10.1111/j.1365-2966.2006.11013.x
Source: arXiv

ABSTRACT Primordial stars are likely to be very massive >30 Msun, form in isolation, and will likely leave black holes as remnants in the centers of their host dark matter halos. We expect primordial stars to form in halos in the mass range 10^6-10^10 Msun. Some of these early black holes, formed at redshifts z>10, could be the seed black hole for a significant fraction of the supermassive black holes found in galaxies in the local universe. If the black hole descendants of the primordial stars exist, their mergers with nearby supermassive black holes may be a prime candidate for long wavelength gravitational wave detectors. We simulate formation and evolution of dark matter halos in LambdaCDM universe. We seed high-redshift dark matter halos with early black holes, and explore the merger history of the host halos and the implications of black hole's kick velocities arising from their coalescence. The central concentration of low mass early black holes in present day galaxies is reduced if they experience even moderate kicks of tens of km/s. Even such modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the low mass black holes that were ejected, compared to those still embedded in their parent halos. Therefore, merger rates with central supermassive black holes in the largest halos may be reduced by more than an order of magnitude. Using analytical and illustrative cosmological N-body simulations, we quantify the role of kicks on the merger rates of black holes formed from massive metal free stars with supermassive black holes in present day galaxies.

0 Bookmarks
 · 
61 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compute the flux of linear momentum carried by gravitational waves emitted from spinning binary black holes at second post-Newtonian (2PN) order for generic orbits. In particular we provide explicit expressions of three new types of terms, namely, next-to-leading order spin-orbit terms at 1.5 post-Newtonian (1.5PN) order, spin-orbit tail terms at 2PN order, and spin-spin terms at 2PN order. Restricting ourselves to quasicircular orbits, we integrate the linear-momentum flux over time to obtain the recoil velocity as function of orbital frequency. We find that in the so-called superkick configuration the higher-order spin corrections can increase the recoil velocity up to a factor ∼3 with respect to the leading-order PN prediction. Whereas the recoil velocity computed in PN theory within the adiabatic approximation can accurately describe the early inspiral phase, we find that its fast increase during the late inspiral and plunge, and the arbitrariness in determining until when it should be trusted, makes the PN predictions for the total recoil not very accurate and robust. Nevertheless, the linear-momentum flux at higher PN orders can be employed to build more reliable resummed expressions aimed at capturing the nonperturbative effects until merger. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasicircular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mikóczi, Vasúth, and Gergely. We also verified that in the limit of extreme mass ratio our expressions for the energy and angular momentum fluxes match the ones of Tagoshi, Shibata, Tanaka, and Sasaki obtained in the context of black hole perturbation theory.
    Physical review D: Particles and fields 08/2009; 80(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: If "seed" central black holes were common in the subgalactic building blocks that merged to form present-day massive galaxies, then relic intermediate-mass black holes (IMBHs) should be present in the Galactic bulge and halo. We use a particle tagging technique to dynamically populate the N-body Via Lactea II high-resolution simulation with black holes, and assess the size, properties, and detectability of the leftover population. The method assigns a black hole to the most tightly bound central particle of each subhalo at infall according to an extrapolation of the M_BH-sigma_* relation, and self-consistently follows the accretion and disruption of Milky Way progenitor dwarfs and their holes in a cosmological "live" host from high redshift to today. We show that, depending on the minimum stellar velocity dispersion, sigma_m, below which central black holes are assumed to be increasingly rare, as many as ~2000 (sigma_m=3 km/s) or as few as ~70 (sigma_m=12 km/s) IMBHs may be left wandering in the halo of the Milky Way today. The fraction of IMBHs kicked out of their host by gravitational recoil is < 20%. We identify two main Galactic subpopulations, "naked" IMBHs, whose host subhalos were totally destroyed after infall, and "clothed" IMBHs residing in dark matter satellites that survived tidal stripping. Naked IMBHs typically constitute 40-50% of the total and are more centrally concentrated. We show that, in the sigma_m=12 km/s scenario, the clusters of tightly bound stars that should accompany naked IMBHs would be fainter than m_V=16 mag, spatially resolvable, and have proper motions of 0.1-10 milliarcsec per year. Their detection may provide an observational tool to constrain the formation history of massive black holes in the early Universe.
    The Astrophysical Journal 03/2013; 780(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A galaxy halo may contain a large number of intermediate mass black holes (IMBHs) with masses in the range of 10^{2-6} solar mass. We propose to directly detect these IMBHs by observing multiply imaged QSO-galaxy or galaxy-galaxy strong lens systems in the submillimeter bands with high angular resolution. The silhouette of an IMBH in the lensing galaxy halo would appear as either a monopole-like or a dipole-like variation at the scale of the Einstein radius against the Einstein ring of the dust-emitting region surrounding the QSO. We use a particle tagging technique to dynamically populate a Milky Way-sized dark matter halo with black holes, and show that the surface mass density and number density of IMBHs have power-law dependences on the distance from the center of the host halo if smoothed on a scale of ~ 1 kpc. Most of the black holes orbiting close to the center are freely roaming as they have lost their dark matter hosts during infall due to tidal stripping. Next generation submillimeter telescopes with high angular resolution (< 0.3 mas) will be capable of directly mapping such off-nuclear freely roaming IMBHs with a mass of ~ 10^6 solar mass in a lensing galaxy that harbours a O(10^9) solar mass supermassive black hole in its nucleus.
    Monthly Notices of the Royal Astronomical Society 01/2013; · 5.52 Impact Factor

Full-text (2 Sources)

Download
0 Downloads
Available from