The ATESP 5 GHz radio survey I. Source counts and spectral index properties of the faint radio population

Astronomy and Astrophysics (Impact Factor: 5.08). 07/2006; DOI: 10.1051/0004-6361:20054273
Source: arXiv

ABSTRACT [Abridged] The nature and evolutionary properties of the faint radio population, responsible for the steepening observed in the 1.4 GHz source counts below 1 milliJy, are not yet entirely clear. Radio spectral indices may help to constrain the origin of the radio emission in such faint radio sources and may be fundamental in understanding eventual links to the optical light. We study the spectral index behaviour of sources that were found in the 1.4 GHz ATESP survey (Prandoni et al. 2000a,b). Using the Australia Telescope Compact Array we observed at 5 GHz part of the region covered by the sub-mJy ATESP survey. In particular we imaged a one square degree area for which deep optical imaging in UBVRIJK is available. In this paper we present the 5 GHz survey and source catalogue, we derive the 5 GHz source counts and we discuss the 1.4-5 GHz spectral index properties of the ATESP sources. The analysis of the optical properties of the sample will be the subject of a following paper. The 5 GHz survey has produced a catalogue of 111 radio sources, complete down to a (6 sigma) limit S_lim(5 GHz)~0.4 mJy. We take advantage of the better spatial resolution at 5 GHz (~2 arcsec compared to ~8 arcsec at 1.4 GHz) to infer radio source structures and sizes. The 5 GHz source counts derived by the present sample are consistent with those reported in the literature, but improve significantly the statistics in the flux range 0.4< S(5 GHz)<1 mJy. The ATESP sources show a flattening of the 1.4-5 GHz spectral index with decreasing flux density, which is particularly significant for the 5 GHz selected sample. Such a flattening confirm previous results coming from smaller samples and is consistent with a flattening of the 5 GHz source counts occurring at fluxes <=0.5 mJy. Comment: 22 pages, 13 figures Accepted for publication on Astronomy and Astrophysics. Replaced version: corrected typos and references updated

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We review the statistical properties of the main populations of radio sources, as emerging from radio and millimeter sky surveys. Recent determinations of local luminosity functions are presented and compared with earlier estimates still in widespread use. A number of unresolved issues are discussed. These include: the (possibly luminosity-dependent) decline of source space densities at high redshifts; the possible dichotomies between evolutionary properties of low- versus high-luminosity and of flat- versus steep-spectrum AGN-powered radio sources; and the nature of sources accounting for the upturn of source counts at sub-mJy levels. It is shown that straightforward extrapolations of evolutionary models, accounting for both the far-IR counts and redshift distributions of star-forming galaxies, match the radio source counts at flux-density levels of tens of microJy remarkably well. We consider the statistical properties of rare but physically very interesting classes of sources, such as GHz Peak Spectrum and ADAF/ADIOS sources, and radio afterglows of gamma-ray bursts. We also discuss the exploitation of large-area radio surveys to investigate large scale structure through studies of clustering and the Integrated Sachs-Wolfe effect. Finally we briefly describe the potential of the new and forthcoming generations of radio telescopes. A compendium of source counts at different frequencies is given in an appendix. Comment: 67 pages, 13 figures, to appear on AARv. References added, misprints corrected
    Astronomy and Astrophysics Review 08/2009; · 9.50 Impact Factor


Available from