Article

The sky distribution of positronium annihilation continuum emission measured with SPI/INTEGRAL

Astronomy and Astrophysics (Impact Factor: 5.08). 01/2006; DOI:10.1051/0004-6361:20054046
Source: arXiv

ABSTRACT We present a measurement of the sky distribution of positronium (Ps) annihilation continuum emission obtained with the SPI spectrometer on board ESA's INTEGRAL observatory. The only sky region from which significant Ps continuum emission is detected is the Galactic bulge. The Ps continuum emission is circularly symmetric about the Galactic centre, with an extension of about 8 deg FWHM. Within measurement uncertainties, the sky distribution of the Ps continuum emission is consistent with that found by us for the 511 keV electron-positron annihilation line using SPI. Assuming that 511 keV line and Ps continuum emission follow the same spatial distribution, we derive a Ps fraction of 0.92 +/- 0.09. These results strengthen our conclusions regarding the origin of positrons in our Galaxy based on observations of the 511 keV line. In particular, they suggest that the main source of Galactic positrons is associated with an old stellar population, such as Type Ia supernovae, classical novae, or low-mass X-ray binaries. Light dark matter is a possible alternative source of positrons. Comment: accepted for publication by A&A

0 0
 · 
1 Bookmark
 · 
59 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Both the robust INTEGRAL 511 keV gamma-ray line and the recent tentative hint of the 135 GeV gamma-ray line from Fermi-LAT have similar signal morphologies, and may be produced from the same dark matter annihilation. Motivated by this observation, we construct a dark matter model to explain both signals and to accommodate the two required annihilation cross sections that are different by more than six orders of magnitude. In our model, to generate the low-energy positrons for INTEGRAL, dark matter particles annihilate into a complex scalar that couples to photon via a charge-radius operator. The complex scalar contains an excited state decaying into the ground state plus an off-shell photon to generate a pair of positron and electron. Two charged particles with non-degenerate masses are necessary for generating this charge-radius operator. One charged particle is predicted to be long-lived and have a mass around 3.8 TeV to explain the dark matter thermal relic abundance from its late decay. The other charged particle is predicted to have a mass below 1 TeV given the ratio of the two signal cross sections. The 14 TeV LHC will concretely test the main parameter space of this lighter charged particle.
    Journal of High Energy Physics 12/2012; 2013(2). · 5.62 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Models of secluded dark matter offer a variant on the standard WIMP picture and can modify our expectations for hidden sector phenomenology and detection. In this work we extend a minimal model of secluded dark matter, comprised of a U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT. This provides a technically natural explanation for the hierarchically small mediator-scale, with hidden-sector confinement generating m_{gamma'}>0. Furthermore, the thermal history of the universe can differ markedly from the WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase transition at temperatures T << M_{dm} after freeze out. The mediator allows both the dark matter and the Standard Model to communicate with the CFT, thus modifying the low-energy phenomenology and cosmic-ray signals from the secluded sector.
    Journal of High Energy Physics 03/2012; 2012(8). · 5.62 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We have developed an Electron-Tracking Compton Camera (ETCC) for use onboard a balloon to observe sub-MeV/MeV gamma rays from celestial objects. The ETCC is constructed with a three dimensional gaseous tracker for recoil electrons from Compton scattering, and GSO:Ce pixel scintillator arrays as absorber of the Compton-scattered gamma-ray. By using the ETCC, we can reconstruct the energy and direction of individual gamma rays. We have developed a prototype ETCC with a (30 cm)3 TPC, and tested its performance in the range of 356 - 835 keV in the laboratory. As the result, we succeeded in taking images of gamma ray sources and determined a detection efficiency of 9.0 × 10−6 and an effective area of 8.0 × 10−3 cm2 at 662 keV for the prototype ETCC. Furthermore, we developed a new power saving readout circuit for the scintillators that achieves the electric power consumption of 0.41 W/channel, an energy dynamic range of 81 - 1333 keV, and an energy resolution of 10.3% at full width at half maximum at 662 keV.
    Journal of Instrumentation 01/2012; 7(01):C01088. · 1.66 Impact Factor

Full-text (2 Sources)

View
14 Downloads
Available from
Dec 22, 2012