The sky distribution of positronium annihilation continuum emission measured with SPI/INTEGRAL

Astronomy and Astrophysics (Impact Factor: 5.08). 01/2006; DOI: 10.1051/0004-6361:20054046
Source: arXiv

ABSTRACT We present a measurement of the sky distribution of positronium (Ps) annihilation continuum emission obtained with the SPI spectrometer on board ESA's INTEGRAL observatory. The only sky region from which significant Ps continuum emission is detected is the Galactic bulge. The Ps continuum emission is circularly symmetric about the Galactic centre, with an extension of about 8 deg FWHM. Within measurement uncertainties, the sky distribution of the Ps continuum emission is consistent with that found by us for the 511 keV electron-positron annihilation line using SPI. Assuming that 511 keV line and Ps continuum emission follow the same spatial distribution, we derive a Ps fraction of 0.92 +/- 0.09. These results strengthen our conclusions regarding the origin of positrons in our Galaxy based on observations of the 511 keV line. In particular, they suggest that the main source of Galactic positrons is associated with an old stellar population, such as Type Ia supernovae, classical novae, or low-mass X-ray binaries. Light dark matter is a possible alternative source of positrons. Comment: accepted for publication by A&A

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intense 0.511 MeV gamma-ray line emission from the Galactic Center observed by INTEGRAL requires a large annihilation rate of nonrelativistic positrons. If these positrons are injected at even mildly relativistic energies, higher-energy gamma rays will also be produced. We calculate the gamma-ray spectrum due to inflight annihilation and compare it with the observed diffuse Galactic gamma-ray data. Even with a simplified but conservative treatment, we find that the positron injection energies must be less than or similar to 3 MeV, which strongly constrains models for Galactic positron production.
    Physical Review Letters 09/2006; 97(7):071102. · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The observed 511 keV line from the Galactic Bulge is a real challenge for theoretical astrophysics: despite a lot of suggested mechanisms, there is still no convincing explanation and the origin of the annihilated positrons remains unknown. Here we discuss the possibility that a population of slowly evaporating primordial black holes with the mass around $10^{16}-10^{17}$ g ejects (among other particles) low--energy positrons into the Galaxy. In addition to positrons, we have also calculated the spectrum and number density of photons and neutrinos produced by such black holes and found that the photons are potentially observable in the near future, while the neutrino flux is too weak and below the terrestrial and extra--terrestrial backgrounds. Depending on their mass distribution, such black holes could make a small fraction or the whole cosmological dark matter. Comment: 7 pages, 7 figures. v4: refereed version + erratum
    Physics Letters B 01/2008; · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Models of secluded dark matter offer a variant on the standard WIMP picture and can modify our expectations for hidden sector phenomenology and detection. In this work we extend a minimal model of secluded dark matter, comprised of a U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT. This provides a technically natural explanation for the hierarchically small mediator-scale, with hidden-sector confinement generating m_{gamma'}>0. Furthermore, the thermal history of the universe can differ markedly from the WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase transition at temperatures T << M_{dm} after freeze out. The mediator allows both the dark matter and the Standard Model to communicate with the CFT, thus modifying the low-energy phenomenology and cosmic-ray signals from the secluded sector.
    Journal of High Energy Physics 03/2012; 2012(8). · 5.62 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014