Unconventional Bose-Einstein condensations from spin-orbit coupling

Chinese Physics Letters (Impact Factor: 0.81). 09/2008; DOI:10.1088/0256-307X/28/9/097102
Source: arXiv

ABSTRACT According to the "no-node" theorem, many-body ground state wavefunctions of
conventional Bose-Einstein condensations (BEC) are positive-definite, thus
time-reversal symmetry cannot be spontaneously broken. We find that
multi-component bosons with spin-orbit coupling provide an unconventional type
of BECs beyond this paradigm. We focus on the subtle case of isotropic Rashba
spin-orbit coupling and the spin-independent interaction. In the limit of the
weak confining potential, the condensate wavefunctions are frustrated at the
Hartree-Fock level due to the degeneracy of the Rashba ring. Quantum zero-point
energy selects the spin-spiral type condensate through the
"order-from-disorder" mechanism. In a strong harmonic confining trap, the
condensate spontaneously generates a half-quantum vortex combined with the
skyrmion type of spin texture. In both cases, time-reversal symmetry is
spontaneously broken. These phenomena can be realized in both cold atom systems
with artificial spin-orbit couplings generated from atom-laser interactions and
exciton condensates in semi-conductor systems.

0 0
  • American Journal of Physics 06/1974; 42:620-621. · 0.78 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We use a two-photon dressing field to create an effective vector gauge potential for Bose-Einstein-condensed 87Rb atoms in the F=1 hyperfine ground state. These Raman-dressed states are spin and momentum superpositions, and we adiabatically load the atoms into the lowest energy dressed state. The effective Hamiltonian of these neutral atoms is like that of charged particles in a uniform magnetic vector potential whose magnitude is set by the strength and detuning of the Raman coupling. The spin and momentum decomposition of the dressed states reveals the strength of the effective vector potential, and our measurements agree quantitatively with a simple single-particle model. While the uniform effective vector potential described here corresponds to zero magnetic field, our technique can be extended to nonuniform vector potentials, giving nonzero effective magnetic fields.
    Physical Review Letters 05/2009; 102(13):130401. · 7.94 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The condensation of electron-hole pairs is studied at zero temperature and in the presence of a weak spin-orbit coupling (SOC) in coupled quantum wells. Under realistic conditions, a perturbative SOC can have observable effects in the order parameter of the condensate. First, the fermion exchange symmetry is absent. As a result, the condensate spin has no definite parity. Additionally, the excitonic SOC breaks the rotational symmetry yielding a complex order parameter in an unconventional way; i.e., the phase pattern of the order parameter is a function of the condensate density. This is manifested through finite off-diagonal components of the static spin susceptibility, suggesting a new experimental method to confirm an excitonic condensate.
    Physical Review Letters 05/2007; 98(16):166405. · 7.94 Impact Factor


1 Download
Available from