Discovery of an Unusual Optical Transient with the Hubble Space Telescope

The Astrophysical Journal (Impact Factor: 6.28). 09/2008; DOI: 10.1088/0004-637X/690/2/1358
Source: arXiv

ABSTRACT We present observations of SCP 06F6, an unusual optical transient discovered
during the Hubble Space Telescope Cluster Supernova Survey. The transient
brightened over a period of ~100 days, reached a peak magnitude of ~21.0 in
both i_775 and z_850, and then declined over a similar timescale. There is no
host galaxy or progenitor star detected at the location of the transient to a 3
sigma upper limit of i_775 = 26.4 and z_850 = 26.1, giving a corresponding
lower limit on the flux increase of a factor of ~120. Multiple spectra show
five broad absorption bands between 4100 AA and 6500 AA and a mostly
featureless continuum longward of 6500 AA. The shape of the lightcurve is
inconsistent with microlensing. The transient's spectrum, in addition to being
inconsistent with all known supernova types, is not matched to any spectrum in
the Sloan Digital Sky Survey (SDSS) database. We suggest that the transient may
be one of a new class.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The time-variable electromagnetic sky has been well-explored at a wide range of wavelengths. Numerous high-energy space missions take advantage of the dark Gamma-ray and X-ray sky and utilize very wide field detectors to provide almost continuous monitoring of the entire celestial sphere. In visible light, new wide-field ground-based surveys cover wide patches of sky with ever decreasing cadence, progressing from monthly-weekly time scale surveys to sub-night sampling. In the radio, new powerful instrumentation offers unprecedented sensitivity over wide fields of view, with pathfinder experiments for even more ambitious programs underway. In contrast, the ultra-violet (UV) variable sky is relatively poorly explored, even though it offers exciting scientific prospects. Here, we review the potential scientific impact of a wide-field UV survey on the study of explosive and other transient events, as well as known classes of variable objects, such as active galactic nuclei and variable stars. We quantify our predictions using a fiducial set of observational parameters which are similar to those envisaged for the proposed ULTRASAT mission. We show that such a mission would be able to revolutionize our knowledge about massive star explosions by measuring the early UV emission from hundreds of events, revealing key physical parameters of the exploding progenitor stars. Such a mission would also detect the UV emission from many tens of tidal-disruption events of stars by super massive black holes at galactic nuclei and enable a measurement of the rate of such events. The overlap of such a wide-field UV mission with existing and planned gravitational-wave and high-energy neutrino telescopes makes it especially timely.
    The Astronomical Journal 03/2013; 147(4). DOI:10.1088/0004-6256/147/4/79 · 4.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present optical spectra and light curves for three hydrogen-poor super-luminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a few days after maximum light to 100 days later shows them to be fairly typical of this class, with spectra dominated by Ca II, Mg II, Fe II and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, \Ni decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 days after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models powered by radioactivity require unrealistic parameters to reproduce the observed light curves, as found by previous studies. Both magnetar heating and circumstellar interaction still appear to be viable candidates. A large diversity in the luminosity in the tail phases is emerging with magnetar models failing in some cases to predict the rapid drop in flux. This would suggest either that magnetars are not responsible, or that the X-ray flux from the magnetar wind is not fully trapped. The light curve of one object shows a distinct re-brightening at around 100d after maximum light. We argue that this could result either from multiple shells of circumstellar material, or from a magnetar ionisation front breaking out of the ejecta.
    Monthly Notices of the Royal Astronomical Society 05/2014; 444(3). DOI:10.1093/mnras/stu1579 · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery of three super-luminous supernovae (SLSNe) at z = 2 - 4 as part of our survey to detect ultraviolet-luminous supernova at z > 2. SLSNe are >=10 times more luminous than normal supernova types, reaching peak luminosities of >~1044 erg s-1. A small subset of SLSNe (type SLSN-R) exhibit a slow evolution, and thus enormous integrated energies (>~1051 erg), consistent with the radiative decay of several solar masses of 56Ni. SLSN-R are believed to be the deaths of very massive stars, ~140 - 260 Msolar, that are theorized to result in pair-instability supernovae. Two of the high redshift SLSNe presented here are consistent with the behavior of SLSN-R out to the extent in which their light curves are sampled, with the third event being consistent with the more rapid fade of the type II-L SLSN SN 2008es at z = 0.205. SLSNe are extremely rare locally but are expected to have been more common in the early Universe and as members of the first generation of stars to form after the Big Bang, the Population III stars. The high intrinsic luminosity of SLSNe and their detectability using our image-stacking technique out to z ~ 6 provide the first viable route to detect and study the deaths of massive Population III stars which are expected to form in pristine gas at redshifts as low as z ~ 2.
    09/2012; DOI:10.1063/1.4754355

Full-text (2 Sources)

Available from
May 21, 2014