Article

Cassiopeia A: dust factory revealed via submillimetre polarimetry

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.52). 09/2008; DOI: 10.1111/j.1365-2966.2009.14453.x
Source: arXiv

ABSTRACT If Type-II supernovae - the evolutionary end points of short-lived, massive stars - produce a significant quantity of dust (>0.1 M_sun) then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type-II supernovae. In this paper we present new data which show that the submm emission from Cas A is polarised at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarised submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarisation in this way and so we attribute the excess polarised submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarised and unpolarised dust emission in the north of the remnant, where there is no contamination from foreground molecular clouds. The inferred dust polarisation fraction is unprecedented (f_pol ~ 30%) which, coupled with the brief timescale available for grain alignment (<300 yr), suggests that supernova dust differs from that seen in other Galactic sources (where f_pol=2-7%), or that a highly efficient grain alignment process must operate in the environment of a supernova remnant. Comment: In press at MNRAS, 10 pages, print in colour

0 Bookmarks
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compare the environmental and star formation properties of far-infrared detected and non--far-infrared detected galaxies out to $z \sim0.5$. Using optical spectroscopy and photometry from the Galaxy And Mass Assembly (GAMA) and Sloan Digital Sky Survey (SDSS), with far-infrared observations from the {\em Herschel}-ATLAS Science Demonstration Phase (SDP), we apply the technique of Voronoi Tessellations to analyse the environmental densities of individual galaxies. Applying statistical analyses to colour, $r-$band magnitude and redshift-matched samples, we show there to be a significant difference at the 3.5$\sigma$ level between the normalized environmental densities of these two populations. This is such that infrared emission (a tracer of star formation activity) favours underdense regions compared to those inhabited by exclusively optically observed galaxies selected to be of the same $r-$band magnitude, colour and redshift. Thus more highly star-forming galaxies are found to reside in the most underdense environments, confirming previous studies that have proposed such a correlation. However, the degeneracy between redshift and far-infrared luminosity in our flux-density limited sample means that we are unable to make a stronger statement in this respect. We then apply our method to synthetic light cones generated from semi-analytic models, finding that over the whole redshift distribution the same correlations between star-formation rate and environmental density are found.
    Monthly Notices of the Royal Astronomical Society 05/2013; 433(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unusual extinction curves of high-redshift QSOs have been taken as evidence that dust is primarily produced by supernovae at high redshift. In particular, the 3000 A Todini-Ferrara-Maiolino kink in the extinction curve of the z = 6.20 SDSS J1048+4637 has been attributed to supernova dust. Here we discuss the challenges in inferring robust extinction curves of high-redshift QSOs and critically assess previous claims of detection of supernova dust. In particular, we address the sensitivity to the choice of intrinsic QSO spectrum, the need for a long wavelength baseline, and the drawbacks in fitting theoretical extinction curves. In a sample of 21 QSOs at z ~ 6 we detect significant ultraviolet extinction using existing broad-band optical, near-infrared, and Spitzer photometry. The median extinction curve is consistent with a Small Magellanic Cloud curve with A_1450 ~ 0.7 mag and does not exhibit any conspicuous (restframe) 2175 A or 3000 A features. For two QSOs, SDSS J1044-0125 at z = 5.78 and SDSS J1030+0524 at z = 6.31, we further present X-shooter spectra covering the wavelength range 0.9-2.5 um. The resulting non-parametric extinction curves do not exhibit the 3000 A kink. Finally, in a re-analysis of literature spectra of SDSS J1048+4637, we do not find evidence for a conspicuous kink. We conclude that the existing evidence for a 3000 A feature is weak and that the overall dust properties at high and low redshift show no significant differences. This, however, does not preclude supernovae from dominating the dust budget at high redshift.
    The Astrophysical Journal 04/2013; 768(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whether supernovae are major sources of dust in galaxies is a long-standing debate. We present infrared and submillimeter photometry and spectroscopy from the Herschel Space Observatory of the Crab Nebula between 51 and 670 {mu}m as part of the Mass Loss from Evolved StarS program. We compare the emission detected with Herschel with multiwavelength data including millimeter, radio, mid-infrared, and archive optical images. We carefully remove the synchrotron component using the Herschel and Planck fluxes measured in the same epoch. The contribution from line emission is removed using Herschel spectroscopy combined with Infrared Space Observatory archive data. Several forbidden lines of carbon, oxygen, and nitrogen are detected where multiple velocity components are resolved, deduced to be from the nitrogen-depleted, carbon-rich ejecta. No spectral lines are detected in the SPIRE wavebands; in the PACS bands, the line contribution is 5% and 10% at 70 and 100 {mu}m and negligible at 160 {mu}m. After subtracting the synchrotron and line emission, the remaining far-infrared continuum can be fit with two dust components. Assuming standard interstellar silicates, the mass of the cooler component is 0.24{sup +0.32} {sub -0.08} M {sub Sun} for T = 28.1{sup +5.5} {sub -3.2} K. Amorphous carbon grains require 0.11 {+-} 0.01 M {sub Sun} of dust with T = 33.8{sup +2.3} {sub -1.8} K. A single temperature modified blackbody with 0.14 M {sub Sun} and 0.08 M {sub Sun} for silicate and carbon dust, respectively, provides an adequate fit to the far-infrared region of the spectral energy distribution but is a poor fit at 24-500 {mu}m. The Crab Nebula has condensed most of the relevant refractory elements into dust, suggesting the formation of dust in core-collapse supernova ejecta is efficient.
    The Astrophysical Journal 11/2012; 760(1). · 6.73 Impact Factor

Full-text (2 Sources)

View
60 Downloads
Available from
May 21, 2014