Cassiopeia A: dust factory revealed via submillimetre polarimetry

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.52). 09/2008; DOI: 10.1111/j.1365-2966.2009.14453.x
Source: arXiv

ABSTRACT If Type-II supernovae - the evolutionary end points of short-lived, massive stars - produce a significant quantity of dust (>0.1 M_sun) then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type-II supernovae. In this paper we present new data which show that the submm emission from Cas A is polarised at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarised submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarisation in this way and so we attribute the excess polarised submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarised and unpolarised dust emission in the north of the remnant, where there is no contamination from foreground molecular clouds. The inferred dust polarisation fraction is unprecedented (f_pol ~ 30%) which, coupled with the brief timescale available for grain alignment (<300 yr), suggests that supernova dust differs from that seen in other Galactic sources (where f_pol=2-7%), or that a highly efficient grain alignment process must operate in the environment of a supernova remnant. Comment: In press at MNRAS, 10 pages, print in colour

  • [Show abstract] [Hide abstract]
    ABSTRACT: The central star-forming region in a blue compact dwarf galaxy, II Zw 40, was observed in the 340-GHz (880-?) band at ˜5 arcsec (250 pc) resolution with the Submillimetre Array (SMA). A source associated with the central star-forming complex was detected with a flux of 13.6 ± 2.0 mJy. The structure is more extended than the beam in the east-west direction. The SMA 880-? flux is analysed by using theoretical models of radio spectral energy distribution along with centimetre interferometric measurements in the literature. We find that (i) the SMA 880-? flux is dominated (˜75 per cent) by free-free emission from the central compact star-forming region and (ii) the contribution from dust emission to the SMA 880-? flux is at most 4 ± 2.5 mJy. We also utilize our models to derive the radio-far-infrared (FIR) relation of the II Zw 40 centre, suggesting that free-free absorption at low frequencies (? several GHz; ? several cm) and the spatial extent of dust affect the radio-FIR relation.
    Monthly Notices of the Royal Astronomical Society 01/2011; 418:828-837. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We calculate the dust formed around AGB and SAGB stars of metallicity Z=0.008 by following the evolution of models with masses in the range 1M<M<8M throughthe thermal pulses phase, and assuming that dust forms via condensation of molecules within a wind expanding isotropically from the stellar surface. We find that, because of the strong Hot Bottom Burning (HBB) experienced, high mass models produce silicates, whereas lower mass objects are predicted to be surrounded by carbonaceous grains; the transition between the two regimes occurs at a threshold mass of 3.5M. These fndings are consistent with the results presented in a previous investigation, for Z=0.001. However, in the present higher metallicity case, the production of silicates in the more massive stars continues for the whole AGB phase, because the HBB experienced is softer at Z=0.008 than at Z=0.001, thus the oxygen in the envelope, essential for the formation of water molecules, is never consumed completely. The total amount of dust formed for a given mass experiencing HBB increases with metallicity, because of the higher abundance of silicon, and the softer HBB, both factors favouring a higher rate of silicates production. This behaviour is not found in low mass stars,because the carbon enrichment of the stellar surface layers, due to repeated Third Drege Up episodes, is almost independent of the metallicity. Regarding cosmic dust enrichment by intermediate mass stars, we ?nd that the cosmic yield at Z=0.008 is a factor 5 larger than at Z=0.001. In the lower metallicity case carbon dust dominates after about 300 Myr, but at Z=0.008 the dust mass is dominated by silicates at all times,with a prompt enrichment occurring after about 40 Myr, associated with the evolution of stars with masses M =7.5 -8M.
    Monthly Notices of the Royal Astronomical Society 05/2012; 424(3). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The origin of interstellar dust in galaxies is poorly understood, particularly the relative contributions from supernovae and the cool stellar winds of low-intermediate mass stars. Here, we present Herschel PACS and SPIRE photometry at 70-500um of the historical young supernova remnants: Kepler and Tycho; both thought to be the remnants of Type Ia explosion events. We detect a warm dust component in Kepler's remnant with T = 82K and mass 0.0031Msun; this is spatially coincident with thermal X-ray emission optical knots and filaments, consistent with the warm dust originating in the circumstellar material swept up by the primary blast wave of the remnant. Similarly for Tycho's remnant, we detect warm dust at 90K with mass 0.0086Msun. Comparing the spatial distribution of the warm dust with X-rays from the ejecta and swept-up medium, and Ha emission arising from the post-shock edge, we show that the warm dust is swept up interstellar material. We find no evidence of a cool (25-50 K) component of dust with mass >0.07Msun as observed in core-collapse remnants of massive stars. Neither the warm or cold dust components detected here are spatially coincident with supernova ejecta material. We compare the lack of observed supernova dust with a theoretical model of dust formation in Type Ia remnants which predicts dust masses of 0.088(0.017)Msun for ejecta expanding into surrounding densities of 1(5)cm-3. The model predicts that silicon- and carbon-rich dust grains will encounter the interior edge of the observed dust emission at 400 years confirming that the majority of the warm dust originates from swept up circumstellar or interstellar grains (for Kepler and Tycho respectively). The lack of cold dust grains in the ejecta suggests that Type Ia remnants do not produce substantial quantities of iron-rich dust grains and has important consequences for the 'missing' iron mass observed in ejecta.
    Monthly Notices of the Royal Astronomical Society 11/2011; 420(4). · 5.52 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014