On the Origin of Complex Stellar Populations in Star Clusters

Proceedings of the International Astronomical Union 09/2007; 3(S246). DOI: 10.1017/S1743921308015330
Source: arXiv


The existence of complex stellar populations in some star clusters challenges the understanding of star formation. E.g. the ONC or the sigma Orionis cluster host much older stars than the main bulk of the young stars. Massive star clusters (omega Cen, G1, M54) show metallicity spreads corresponding to different stellar populations with large age gaps. We show that (i) during star cluster formation field stars can be captured and (ii) very massive globular clusters can accrete gas from a long-term embedding inter stellar medium and restart star formation. Comment: 2 pages, 3 figures, To be published in the proceedings of IAUS246 "Dynamical Evolution of Dense Stellar Systems", ed. E. Vesperini (Chief Editor), M. Giersz, A. Sills

Download full-text


Available from: Pavel Kroupa, Oct 26, 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The bright Type II-plateau supernova (SN) 2004dj occurred within the young, massive stellar cluster Sandage-96 in a spiral arm of NGC 2403. New multiwavelength observations obtained with several ground-based and space-based telescopes were combined to study the radiation from Sandage-96 after SN 2004dj faded away. Sandage-96 started to dominate the flux in the optical bands starting from 2006 September (~800 days after explosion). The optical fluxes are equal to the pre-explosion ones within the observational uncertainties. An optical Keck spectrum obtained ~900 days after explosion shows the dominant blue continuum from the cluster stars shortward of 6000 Å as well as strong SN nebular emission lines redward. The integrated spectral energy distribution (SED) of the cluster has been extended into the ultraviolet region by archival XMM-Newton and new Swift observations, and compared with theoretical models. The outer parts of the cluster have been resolved by the Hubble Space Telescope, allowing the construction of a color-magnitude diagram (CMD). The fitting of the cluster SED with theoretical isochrones results in cluster ages distributed between 10 and 40 Myr, depending on the assumed metallicity and the theoretical model family. The isochrone fitting of the CMDs indicates that the resolved part of the cluster consists of stars having a bimodal age distribution: a younger population at ~10-16 Myr and an older one at ~32-100 Myr. The older population has an age distribution similar to that of the other nearby field stars. This may be explained with the hypothesis that the outskirts of Sandage-96 are contaminated by stars captured from the field during cluster formation. The young age of Sandage-96 and the comparison of its pre and postexplosion SEDs suggest 12 M prog 20 M ☉ as the most probable mass range for the progenitor of SN 2004dj. This is consistent with, but perhaps slightly higher than, most of the other Type II-plateau SN progenitor masses determined so far.
    The Astrophysical Journal 03/2009; 695(1):619. DOI:10.1088/0004-637X/695/1/619 · 5.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.
    Astronomy and Astrophysics Review 01/2012; 20. DOI:10.1007/s00159-012-0050-3 · 17.74 Impact Factor