Article

The exceptionally extended flaring activity in the X-ray afterglow of GRB 050730 observed with Swift and XMM-Newton

Astronomy and Astrophysics (Impact Factor: 4.48). 04/2007; DOI: 10.1051/0004-6361:20066227
Source: arXiv

ABSTRACT We present the results of a detailed spectral and temporal analysis of Swift and XMM-Newton observations of the high redshift (z=3.969) GRB 050730. The X-ray afterglow of GRB 050730 was found to decline with time with superimposed intense flaring activity that extended over more than two orders of magnitude in time. Seven distinct re-brightening events starting from 236 s up to 41.2 ks after the burst were observed. The underlying decay of the afterglow was well described by a double broken power-law model with breaks at t_1= 237 +/- 20 s and t_2 = 10.1 (-2.2) (+4.6) ks. The temporal decay slopes before, between and after these breaks were alpha_1 = 2.1 +/- 0.3, alpha_2 = 0.44 (-0.08) (+0.14) and alpha_3 = 2.40 (+0.07) (-0.09), respectively. The spectrum of the X-ray afterglow was well described by a photoelectrically absorbed power-law with an absorbing column density N_H=(1.28 +/- 0.26) 10^22 cm^-2 in the host galaxy. Strong X-ray spectral evolution during the flaring activity was present. In the majority of the flares (6/7) the ratio Delta_t/t_p between the duration of the event and the time when the flare peaks was nearly constant and about 0.6-0.7. We showed that the observed spectral and temporal properties of the first three flares are consistent with being due both to high-latitude emission, as expected if the flares were produced by late internal shocks, or to refreshed shocks, i.e. late time energy injections into the main afterglow shock by slow moving shells ejected from the central engine during the prompt phase. The event fully satisfies the E_p-E_iso Amati relation while is not consistent with the E_p-E_jet Ghirlanda relation. Comment: 12 pages, 5 figures, accepted for publication in A&A

0 Bookmarks
 · 
89 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first Swift Ultraviolet/Optical Telescope (UVOT) gamma-ray burst (GRB) afterglow catalog. The catalog contains data from over 64,000 independent UVOT image observations of 229 GRBs first detected by Swift, the High Energy Transient Explorer 2 (HETE2), the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), and the Interplanetary Network (IPN). The catalog covers GRBs occurring during the period from 2005 January 17 to 2007 June 16 and includes ~86% of the bursts detected by the Swift Burst Alert Telescope (BAT). The catalog provides detailed burst positional, temporal, and photometric information extracted from each of the UVOT images. Positions for bursts detected at the 3σ level are provided with a nominal accuracy, relative to the USNO-B1 catalog, of ~025. Photometry for each burst is given in three UV bands, three optical bands, and a "white" or open filter. Upper limits for magnitudes are reported for sources detected below 3σ. General properties of the burst sample and light curves, including the filter-dependent temporal slopes, are also provided. The majority of the UVOT light curves, for bursts detected at the 3σ level, can be fit by a single power-law, with a median temporal slope (α) of 0.96, beginning several hundred seconds after the burst trigger and ending at ~1 × 105 s. The median UVOT v-band (~5500 Å) magnitude at 2000 s for a sample of "well"-detected bursts is 18.02. The UVOT flux interpolated to 2000 s after the burst, shows relatively strong correlations with both the prompt Swift BAT fluence, and the Swift X-ray flux at 11 hr after the trigger.
    The Astrophysical Journal 11/2008; 690(1):163. · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims. We present a comprehensive analysis of the optical and X-ray light curves (LCs) and spectral energy distributions (SEDs) of a large sample of gamma-ray burst (GRB) afterglows to investigate the relationship between the optical and X-ray emission after the prompt phase. We consider all data available in the literature, which where obtained with different instruments. Methods. We collected the optical data from the literature and determined the shapes of the optical LCs. Then, using previously presented X-ray data we modeled the optical/X-ray SEDs. We studied the SED parameter distributions and compared the optical and X-ray LC slopes and shapes. Results. The optical and X-ray spectra become softer as a function of time while the gas-to-dust ratios of GRBs are higher than the values calculated for the Milky Way and the Large and Magellanic Clouds. For 20\% of the GRBs the difference between the optical and X-ray slopes is consistent with 0 or $1/4$ within the uncertainties (we did it not consider the steep decay phase), while in the remaining 80\% the optical and X-ray afterglows show significantly different temporal behaviors. Interestingly, we find an indication that the onset of the forward shock in the optical LCs (initial peaks or shallow phases) could be linked to the presence of the X-ray flares. Indeed, when X-ray flares are present during the steep decay, the optical LC initial peak or end plateau occurs during the steep decay; if instead the X-ray flares are absent or occur during the plateau, the optical initial peak or end plateau takes place during the X-ray plateau. Conclusions. The forward-shock model cannot explain all features of the optical (e.g. bumps, late re-brightenings) and X-ray (e.g. flares, plateaus) LCs. However, the synchrotron model is a viable mechanism for GRBs at late times. In particular, we found a relationship between the presence of the X-ray flares and the shape of the optical LC that indicates a link between the prompt emission and the optical afterglow.
    Astronomy and Astrophysics 09/2013; A&A. · 4.48 Impact Factor

Full-text (2 Sources)

Download
46 Downloads
Available from
Jun 4, 2014