Article

# Zero temperature conductance of parallel T-shape double quantum dots

Physica E Low-dimensional Systems and Nanostructures (Impact Factor: 1.86). 08/2007; DOI: 10.1016/j.physe.2007.04.008

Source: arXiv

- Citations (10)
- Cited In (0)

- [Show abstract] [Hide abstract]

**ABSTRACT:**The transport properties of a double quantum-dot device with one of the dots coupled to perfect conductors are analyzed using the numerical renormalization group technique and slave-boson mean-field theory. The coupling between the dots strongly influences the transport through the system leading to a non-monotonic dependence of the conductance as a function of the temperature and the magnetic field. For small inter-dot coupling and parameters such that both dots are in the Kondo regime, there is a two-stage screening of the dot's magnetic moments that is reflected in the conductance. In an intermediate temperature regime Kondo correlations develop on one of the dots and the conductance is enhanced. At low temperatures the Kondo effect takes place on the second dot leading to a singlet ground state in which the conductance is strongly suppressed.Physical Review B 09/2004; · 3.66 Impact Factor - [Show abstract] [Hide abstract]

**ABSTRACT:**Double quantum dots offer unique possibilities for the study of many-body correlations. A system containing one Kondo dot and one effectively noninteracting dot maps onto a single-impurity Anderson model with a structured (nonconstant) density of states. Numerical renormalization-group calculations show that, while band filtering through the resonant dot splits the Kondo resonance, the singlet ground state is robust. The system can also be continuously tuned to create a pseudogapped density of states and access a quantum-critical point separating Kondo and non-Kondo phases.Physical Review Letters 10/2006; 97(9):096603. · 7.73 Impact Factor - [Show abstract] [Hide abstract]

**ABSTRACT:**We report a strong Kondo effect (Kondo temperature approximately 4 K) at high magnetic field in a selective area growth semiconductor quantum dot. The Kondo effect is ascribed to a singlet-triplet transition in the ground state of the dot. At the transition, the low-temperature conductance approaches the unitary limit. Away from the transition, for low bias voltages and temperatures, the conductance is sharply reduced. The observed behavior is compared to predictions for a two-stage Kondo effect in quantum dots coupled to single-channel leads.Physical Review Letters 04/2002; 88(12):126803. · 7.73 Impact Factor

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.