The Oxygen Abundances of Luminous and Ultraluminous Infrared Galaxies

The Astrophysical Journal (Impact Factor: 5.99). 08/2007; 674(1). DOI: 10.1086/522363
Source: arXiv


Luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) dominate the star formation rate budget of the universe at z > 1, yet no local measurements of their heavy element abundances exist. We measure nuclear or near-nuclear oxygen abundances in a sample of 100 star-forming LIRGs and ULIRGs using new, previously published, and archival spectroscopy of strong emission lines (including [O II] 3727, 3729 A) in galaxies with redshifts ~ 0.1. When compared to local emission-line galaxies of similar luminosity and mass (using the near-infrared luminosity-metallicity and mass-metallicity relations), we find that LIRGs and ULIRGs are under-abundant by a factor of two on average. As a corollary, LIRGs and ULIRGs also have smaller effective yields. We conclude that the observed under-abundance results from the combination of a decrease of abundance with increasing radius in the progenitor galaxies and strong, interaction- or merger-induced gas inflow into the galaxy nucleus. This conclusion demonstrates that local abundance scaling relations are not universal, a fact that must be accounted for when interpreting abundances earlier in the universe's history when merger-induced star formation was the dominant mode. We use our local sample to compare to high-redshift samples and assess abundance evolution in LIRGs and ULIRGs. We find that abundances in these systems increased by ~0.2 dex from z ~ 0.6 to z ~ 0.1. Evolution from z ~ 2 submillimeter galaxies to z ~ 0.1 ULIRGs also appears to be present, though uncertainty due to spectroscopic limitations is large. Comment: To appear in 1 Dec 2007 issue of ApJ; 23 pages, 13 figures

5 Reads
  • Source
    • "In the M-Z relation, we find a hint that morphologically disturbed BCGs exhibit low O/H values and high SSFRs compared to undisturbed counterparts. The low metallicity in disturbed BCGs might be resulted from mergers and/or interactions which could induce low O/H values in disturbed BCGs due to infall of metal-poor gas from the galaxy outskirts (Rupke et al. 2008, 2010, Peeples et al. 2009, Kewley et al. 2010). Furthermore, disturbed BCGs might have undergone active star formation "
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a spectroscopic study of 343 blue compact galaxies (BCGs) at 0.20 < z < 0.35 from the Sloan Digital Sky Survey (SDSS) DR7 data. We derive gas phase oxygen abundance using the empirical and direct method. Stellar masses of galaxies are derived from the STARLIGHT code. We also derive star formation rates of galaxies based on Hα emission line from the SDSS as well as far-ultraviolet (FUV) flux from the Galaxy Evolution Explorer GR6 data. Evolution of the luminosity-metallicity and mass-metallicity (M-Z) relations with redshift is observed. At a given luminosity and mass, galaxies at higher redshifts appear to be biased to low metallicities relative to the lower redshift counterparts. Furthermore, low mass galaxies show higher specific star formation rates (SSFRs) than more massive ones and galaxies at higher redshifts are biased to higher SSFRs compared to the lower redshift sample. By visual inspection of the SDSS images, we classify galaxy morphology into disturbed or undisturbed. In the M-Z relation, we find a hint that morphologically disturbed BCGs appear to exhibit low metallicities and high SSFRs compared to undisturbed counterparts. We suggest that our results support downsizing galaxy formation scenario and star formation histories of BCGs are closely related with their morphologies.
    03/2013; 30(1):59-67. DOI:10.5140/JASS.2013.30.1.059
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use a sample of 43,690 galaxies selected from the Sloan Digital Sky Survey Data Release 4 to study the systematic effects of specific star formation rate (SSFR) and galaxy size (as measured by the half light radius, r_h) on the mass-metallicity relation. We find that galaxies with high SSFR or large r_h for their stellar mass have systematically lower gas phase-metallicities (by up to 0.2 dex) than galaxies with low SSFR or small r_h. We discuss possible origins for these dependencies, including galactic winds/outflows, abundance gradients, environment and star formation rate efficiencies. Comment: Accepted by ApJ Letters
    The Astrophysical Journal 11/2007; 672(2). DOI:10.1086/527296 · 5.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We fit the near-infrared to radio spectral energy distributions of 30 luminous and ultra-luminous infrared galaxies with pure starburst models or models that include both starburst and AGN components to determine important physical parameters for this population of objects. In particular we constrain the optical depth towards the luminosity source, the star formation rate, the star formation efficiency and the AGN fraction. We find that although about half of our sample have best-fit models that include an AGN component, only 30% have an AGN which accounts for more than 10% of the infrared luminosity, whereas all have an energetically dominant starburst. Our derived AGN fractions are generally in good agreement other measurements based in the mid-infrared line ratios measured by Spitzer IRS, but lower than those derived from PAH equivalent widths or the mid-infrared spectral slope. Our models determine the mass of dense molecular gas via the extinction required to reproduce the SED. Assuming that this mass is that traced by HCN, we reproduce the observed linear relation between HCN and infrared luminosities found by Gao & Solomon. We also find that the star formation efficiency, defined as the current star formation rate per unit of dense molecular gas mass, is enhanced in the ULIRGs phase. If the evolution of ULIRGs includes a phase in which an AGN contributes an important fraction to the infrared luminosity, this phase should last an order of magnitude less time than the starburst phase. Because the mass of dense molecular gas which we derive is consistent with observations of the HCN molecule,it should be possible to estimate the mass of dense, star-forming molecular gas in such objects when molecular line data are not available. Comment: Re-submitted to A&A
    Astronomy and Astrophysics 12/2007; 484(3). DOI:10.1051/0004-6361:20078883 · 4.38 Impact Factor
Show more


5 Reads
Available from