The Oxygen Abundances of Luminous and Ultraluminous Infrared Galaxies

The Astrophysical Journal (Impact Factor: 6.28). 08/2007; 674(1). DOI: 10.1086/522363
Source: arXiv

ABSTRACT Luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) dominate the star formation rate budget of the universe at z > 1, yet no local measurements of their heavy element abundances exist. We measure nuclear or near-nuclear oxygen abundances in a sample of 100 star-forming LIRGs and ULIRGs using new, previously published, and archival spectroscopy of strong emission lines (including [O II] 3727, 3729 A) in galaxies with redshifts ~ 0.1. When compared to local emission-line galaxies of similar luminosity and mass (using the near-infrared luminosity-metallicity and mass-metallicity relations), we find that LIRGs and ULIRGs are under-abundant by a factor of two on average. As a corollary, LIRGs and ULIRGs also have smaller effective yields. We conclude that the observed under-abundance results from the combination of a decrease of abundance with increasing radius in the progenitor galaxies and strong, interaction- or merger-induced gas inflow into the galaxy nucleus. This conclusion demonstrates that local abundance scaling relations are not universal, a fact that must be accounted for when interpreting abundances earlier in the universe's history when merger-induced star formation was the dominant mode. We use our local sample to compare to high-redshift samples and assess abundance evolution in LIRGs and ULIRGs. We find that abundances in these systems increased by ~0.2 dex from z ~ 0.6 to z ~ 0.1. Evolution from z ~ 2 submillimeter galaxies to z ~ 0.1 ULIRGs also appears to be present, though uncertainty due to spectroscopic limitations is large. Comment: To appear in 1 Dec 2007 issue of ApJ; 23 pages, 13 figures

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new catalog of 118 Ultraluminous Infrared Galaxies (ULIRGs) and one Hyperluminous Infrared Galaxy (HLIRG) by crossmatching AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the Final Data Release of the Two-Degree Field Galaxy Redshift Survey (2dFGRS). 40 of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing/post mergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the AGN fraction and IR luminosity. We show that ULIRGs have a large off-set from the 'main sequence' up to z~1; their off-set from the z~2 'main sequence' is relatively smaller. We find a consistent result with the previous studies showing that compared to local star forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We for the first time demonstrate that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex - 0.5 dex) is comparable with the scatter of z~2-3 galaxies. Their optical colors show that ULIRGs are mostly blue galaxies and this agrees with previous findings. We provide the largest local (0.050 < z < 0.487) ULIRG catalog with stellar masses, SFRs, gas metallicities and optical colors. Our catalog provides us active galaxies analogous to high-z galaxies in the local Universe where they can be rigorously scrutinized.
    The Astrophysical Journal 10/2014; 797(1). DOI:10.1088/0004-637X/797/1/54 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the kinematic properties of the ambient ionized ISM and ionized gas outflows in a large and representative sample of local luminous and ultraluminous infrared galaxies (U/LIRGs) (58 systems, 75 galaxies), on the basis of integral field spectroscopy (IFS)-based high S/N integrated spectra at galactic and sub-galactic, i.e. star forming (SF) clumps, scales. Ambient ionized gas. The velocity dispersion of the ionized ISM in U/LIRGs ( ~ 70 kms-1) is larger than in lower luminosity local star forming galaxies ( ~ 25 kms-1). While for isolated disc LIRGs star formation appears to sustain turbulence, gravitational energy release associated to interactions and mergers plays an important role driving sigma in the U/LIRG range. We also find that the impact of an AGN in ULIRGs is strong, increasing sigma by a factor 1.5 on average. The observed weak dependency of sigma on SFR surface density for local U/LIRGs is in very good agreement with that measured in some high-z sources. Ionized outflows. The presence of ionized gas outflows in U/LIRGs seems universal based on the detection of a broad, usually blueshifted, Halpha line. AGNs in U/LIRGs are able to generate faster (x2) and more massive (x1.4) ionized gas outflows than pure starbursts. The derived ionized mass loading factors are in general below one, with only a few AGNs above this limit. Only a small fraction of the ionized material from low mass LIRGs (log(Mdyn/Msun) < 10.4) could reach the intergalactic medium, with more massive galaxies retaining the gas. The observed average outflow properties in U/LIRGs are similar to high-z galaxies of comparable SFR. In the bright SF clumps found in LIRGs, ionized gas outflows appear to be very common. For a given SFR surface density, outflows in LIRG clumps would be about one to two orders of magnitude less energetic than those launched by clumps in high-z SF galaxies.
    Astronomy and Astrophysics 04/2014; 568(S309). DOI:10.1051/0004-6361/201323324 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure the gas-phase oxygen abundances in 4 Lyman Break Analogs (LBAs) using auroral emission lines to derive direct abundances. The direct method oxygen abundances of these objects are generally consistent with the empirically-derived strong-line method values, confirming that these objects are low oxygen abundance outliers from the Mass-Metallicity (MZ) relation defined by star forming SDSS galaxies. We find slightly anomalous excitation conditions (Wolf-Rayet features) that could potentially bias the empirical estimates towards high values if caution is not exercised in the selection of the strong-line calibration used. The high rate of star formation and low oxygen abundance of these objects is consistent with the predictions of the Fundamental Metallicity Relation (FMR), in which the infall of relatively unenriched gas simultaneously triggers an episode of star formation and dilutes ISM of the host galaxy.
    The Astrophysical Journal 06/2014; 792(2). DOI:10.1088/0004-637X/792/2/140 · 6.28 Impact Factor


1 Download
Available from