Article

XMM-Newton X-ray and optical observations of the globular clusters M 55 and NGC 3201

Astronomy and Astrophysics (Impact Factor: 5.08). 09/2005; DOI:10.1051/0004-6361:20053010
Source: arXiv

ABSTRACT We have observed two low concentration Galactic globular clusters with the X-ray observatory XMM-Newton. We detect 47 faint X-ray sources in the direction of M 55 and 62 in the field of view of NGC 3201. Using the statistical Log N-Log S relationship of extragalactic sources derived from XMM-Newton Lockman Hole observations, to estimate the background source population, we estimate that very few of the sources (1.5+/-1.0) in the field of view of M 55 actually belong to the cluster. These sources are located in the centre of the cluster as we expect if the cluster has undergone mass segregation. NGC 3201 has approximately 15 related sources, which are centrally located but are not constrained to lie within the half mass radius. The sources belonging to this cluster can lie up to 5 core radii from the centre of the cluster which could imply that this cluster has been perturbed. Using X-ray (and optical, in the case of M 55) colours, spectral and timing analysis (where possible) and comparing these observations to previous X-ray observations, we find evidence for sources in each cluster that could be cataclysmic variables, active binaries, millisecond pulsars and possible evidence for a quiescent low mass X-ray binary with a neutron star primary, even though we do not expect any such objects in either of the clusters, due to their low central concentrations. The majority of the other sources are background sources, such as AGN. Comment: 12 pages, 7 figures, accepted to be published in A&A

0 0
 · 
0 Bookmarks
 · 
71 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present far-UV spectroscopy obtained with HST for 48 blue objects in the core of 47 Tuc. Based on their position in a FUV-optical colour-magnitude diagram, these were expected to include cataclysmic variables (CVs), blue stragglers (BSs), white dwarfs (WDs) and other exotic objects. For a subset of these sources, we also construct FUV-NIR SEDs. Based on our analysis of this extensive data set, we report the following main results. (1) We spectroscopically confirm 3 previously known or suspected CVs via the detection of emission lines and find new evidence for dwarf nova eruptions in two of these. (2) Only one other source in our spectroscopic sample exhibits marginal evidence for line emission, but predicted and observed CV numbers still agree to within a factor of about 2-3. (3) We have discovered a hot (T_eff = 8700 K), low-mass (M = 0.05 M_sun) secondary star in a previously known 0.8 day binary system. This exotic object is probably the remnant of a subgiant that has been stripped of its envelope and may represent the ``smoking gun'' of a recent dynamical encounter. (4) We have found a Helium WD, the second to be optically detected in 47 Tuc, and the first outside a millisecond-pulsar system. (5) We have discovered a BS-WD binary system, the first known in any globular cluster. (6) We have found two additional candidate WD binary systems with putative main sequence and subgiant companions. (7) We estimate the WD binary fraction in the core of 47 Tuc to be 15 +17/-9 (stat) +8/-7 (sys). (8) One BS in our sample may exceed twice the cluster turn-off mass, but the uncertainties are large. Taken as a whole, our study illustrates the wide range of stellar exotica that are lurking in the cores of GCs, most of which are likely to have undergone significant dynamical encounters. [abridged] Comment: 28 pages, 22 figures, 1 table, accepted for publication in ApJ; abstract below is abridged; new version corrects some typos and updates some references; a copy with some higher resolution figures is available from http://www.astro.soton.ac.uk/~christian (under "Research")
    The Astrophysical Journal 05/2008; · 6.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Using new Chandra X-ray observations and existing XMM-Newton X-ray and Hubble far ultraviolet observations, we aim to detect and identify the faint X-ray sources belonging to the Galactic globular cluster NGC 2808 in order to understand their role in the evolution of globular clusters. We present a Chandra X-ray observation of the Galactic globular cluster NGC 2808. We classify the X-ray sources associated with the cluster by analysing their colours and variability. Previous observations with XMM-Newton and far ultraviolet observations with the Hubble Space Telescope are re-investigated to help identify the Chandra sources associated with the cluster. We compare our results to population synthesis models and observations of other Galactic globular clusters. We detect 113 sources, of which 16 fall inside the half-mass radius of NGC 2808 and are concentrated towards the cluster core. From statistical analysis, these 16 sources are very likely to be linked to the cluster. We detect short-term (1 day) variability in X-rays for 7 sources, of which 2 fall inside the half-mass radius, and long-term (28 months) variability for 10 further sources, of which 2 fall inside the half-mass radius. Ultraviolet counterparts are found for 8 Chandra sources in the core, of which 2 have good matching probabilities and have ultraviolet properties expected for cataclysmic variables. We find one likely neutron star-quiescent low-mass X-ray binary and 7 cataclysmic variable candidates in the core of NGC 2808. The other 8 sources are cataclysmic variable candidates, but some could possibly be active binaries or millisecond pulsars. We find a possible deficit of X-ray sources compared to 47 Tuc which could be related to the metallicity content and the complexity of the evolution of NGC 2808. Comment: 14 pages, 3 pages of online material, 11 figures, 7 tables. Accepted for publication in A&A
    Astronomy and Astrophysics 08/2008; · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We report the search for low-mass X-ray binaries in quiescence (qLMXBs) in the globular cluster NGC 6304 using XMM observations. We present the spectral analysis, leading to the identification of three candidate qLMXBs within the field of this globular cluster (GC), each consistent with the X-ray spectral properties of previously identified qLMXBs in the field and in other globular clusters -- specifically, with a hydrogen atmosphere neutron star with radius between 5--20\km. One (source 4, with R=11.7^{+8.3}_{-0.4} (D/5.97 kpc) km and kT_eff=117^{+59}_{-44} eV) is located within one core radius (r_c) of the centre of NGC 6304. This candidate also presents a spectral power-law component contributing 49 per cent of the 0.5-10 keV flux. A second one (source 9 with R=15.3^{+11.2}_{-6.5} (D/5.97 kpc) km and kT_eff=100^{+24}_{-19} eV) is found well outside the optical core (at 32 r_c) but still within the tidal radius. From spatial coincidence, we identify a bright 2MASS infrared counterpart which, at the distance of NGC 6304, seems to be a post-asymptotic giant branch star. The third qLMXB (source 5 with R=23^{+38}_{-14} (D/5.97 kpc) km and kT_eff=70^{+28}_{-20} eV) is a low signal-to-noise candidate for which we also identify from spatial coincidence a bright 2MASS infrared counterpart, with 99.916 per cent confidence. Three qLMXBs from this GC is marginally consistent with that expected from the encounter rate of NGC 6304. We also report a low signal-to-noise source with an unusually hard photon index (\alpha=-2.0^{+1.2}_{-2.2}). Finally, we present an updated catalogue of the X-ray sources lying in the field of NGC 6304, and compare this with the previous catalogue compiled from Rosat observations.
    Monthly Notices of the Royal Astronomical Society 09/2008; · 5.52 Impact Factor

Full-text

View
1 Download
Available from

N. A. Webb