Early Afterglows in Wind Environments Revisited

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.23). 08/2005; DOI: 10.1111/j.1365-2966.2005.09411.x
Source: arXiv

ABSTRACT When a cold shell sweeps up the ambient medium, a forward shock and a reverse shock will form. We analyze the reverse-forward shocks in a wind environment, including their dynamics and emission. An early afterglow is emitted from the shocked shell, e.g., an optical flash may emerge. The reverse shock behaves differently in two approximations: relativistic and Newtonian cases, which depend on the parameters, e.g., the initial Lorentz factor of the ejecta. If the initial Lorentz factor is much less than $114 E_{53}^{1/4} \Delta_{0,12}^{-1/4} A_{*,-1}^{-1/4}$, the early reverse shock is Newtonian. This may take place for the wider of a two-component jet, an orphan afterglow caused by a low initial Lorentz factor, and so on. The synchrotron self absorption effect is significant especially for the Newtonian reverse shock case, since the absorption frequency $\nu_a$ is larger than the cooling frequency $\nu_c$ and the minimum synchrotron frequency $\nu_m$ for typical parameters. For the optical to X-ray band, the flux is nearly unchanged with time during the early period, which may be a diagnostic for the low initial Lorentz factor of the ejecta in a wind environment. We also investigate the early light curves with different wind densities, and compare them with these in the ISM model. Comment: 14 pages, 7 figures, 2 tables, accepted for publication in MNRAS

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A long and intense gamma-ray burst (GRB) was detected by INTEGRAL on July 11 2012 with a duration of ~115s and fluence of 2.8x10^-4 erg cm^-2 in the 20 keV-8 MeV energy range. GRB 120711A was at z~1.405 and produced soft gamma-ray emission (>20 keV) for at least ~10 ks after the trigger. The GRB was observed by several ground-based telescopes that detected a powerful optical flash peaking at an R-band brightness of ~11.5 mag at ~126 s after the trigger. We present a comprehensive temporal and spectral analysis of the long-lasting soft gamma-ray emission detected in the 20-200 keV band with INTEGRAL, the Fermi/LAT post-GRB detection above 100 MeV, the soft X-ray afterglow from XMM-Newton, Chandra, and Swift and the optical/NIR detections from Watcher, Skynet, GROND, and REM. We modelled the long-lasting soft gamma-ray emission using the standard afterglow scenario, which indicates a forward shock origin. The combination of data extending from the NIR to GeV energies suggest that the emission is produced by a broken power-law spectrum consistent with synchrotron radiation. The afterglow is well modelled using a stratified wind-like environment with a density profile k~1.2, suggesting a massive star progenitor (i.e. Wolf-Rayet). The analysis of the reverse and forward shock emission reveals an initial Lorentz factor of ~120-340, a jet half-opening angle of ~2deg-5deg, and a baryon load of ~10^-5-10^-6 Msun consistent with the expectations of the fireball model when the emission is highly relativistic. Long-lasting soft gamma-ray emission from other INTEGRAL GRBs with high peak fluxes, such as GRB 041219A, was not detected, suggesting that a combination of high Lorentz factor, emission above 100 MeV, and possibly a powerful reverse shock are required. Similar long-lasting soft gamma-ray emission has recently been observed from the nearby and extremely bright Fermi/LAT burst GRB 130427A.
    Astronomy and Astrophysics 05/2014; 567. DOI:10.1051/0004-6361/201220872 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-ray burst (GRB) ejecta carries huge amounts of energy expanding into the surrounding medium and heats up these materials, making it possible that nucleosynthesis can take place in such hot sites in afterglow stage. Here, we study possible changes in chemical abundances in the GRB afterglow processes of Wolf-Rayet (WR) star wind environments (Case A) and constant density surroundings (Case B). We find that the light element of lithium-beryllium-boron could occur in the afterglows via He+He process and spallation reactions. Some isotopes of F, Ne, Mg, Al, Si, P, S and Fe-group elements are also new species formed in the afterglows via proton-, neutron- and α-capture. The results show that the nucleosynthetic yields might be a diagnostic of the GRB's ambient environment. Our calculations indicate that Mg, Al, Si, P, Cr, Mn, Fe and Co have trended to appear in Case A, while Ne, Ti and Ni trend to occur in Case B. Furthermore, although some species have occurred both in Cases A and B, their mass fractions are quite different in these two cases. Here, we show that the mass fractions of 7Li, 7Be, 24Mg and 30Si are higher in Case A than that in Case B, but 18F gives an opposite conclusion. Nucleosynthetic outputs might also be an indice to estimate the luminosity-temperature relation factor β. In this study, when β reduces, the mass abundances of 11B and 20Ne are higher in Case B than that in Case A; in contrast, as the β becomes larger, this trend would be reversed; therefore, perhaps we could select the above elements as the indicators to estimate the properties of the surroundings around the GRBs. We also suggest that the spectroscopic observations of a GRB afterglow could only reveal the nucleosynthetic outputs from the interaction site between the GRB jet and its ambient matter, but could not represent the original composition of the pre-GRB surrounding medium.
    Monthly Notices of the Royal Astronomical Society 02/2014; 438(4). DOI:10.1093/mnras/stt2450 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GRB 130427A was extremely bright due to a combination of its low redshift and energetics typical of high-redshift gamma-ray bursts (GRBs). As a result, we were able to obtain high-quality light curves across the electromagnetic spectrum, providing an excellent opportunity for detailed broadband modeling. We observed GRB 130427A with the Westerbork Synthesis Radio Telescope and collected well-sampled light curves at 1.4 and 4.8 GHz. Our observations with the European Very Long Baseline Interferometry Network provide the best localization of this GRB, with a position uncertainty of 0.6 milliarcseconds. Our flux density measurements are combined with all the data available in the literature at radio, optical and X-ray frequencies to perform broadband modeling. We show that the reverse-forward shock model that has been suggested to explain the GRB 130427A observations does not give a good fit to all the light curve features once the entire broadband data set is modeled. We suggest a two-component jet model as an alternative, providing a better description of the data, and we discuss the implications and limitations of both models. The low density inferred from the modeling implies that the GRB 130427A progenitor is either a very low-metallicity Wolf-Rayet star, or a rapidly rotating, low-metallicity O star. In terms of the shock microphysics, we find that the fraction of the energy in electrons is evolving in time, and that the fraction of electrons participating in a relativistic power-law energy distribution is less than 15%. We observed intraday variability during the earliest WSRT observations, and the source sizes inferred from our modeling are consistent with this variability being due to interstellar scintillation effects. Finally, we present and discuss our limits on the linear and circular polarization, which are among the deepest limits of GRB radio polarization to date.
    Monthly Notices of the Royal Astronomical Society 04/2014; 444(4). DOI:10.1093/mnras/stu1664 · 5.23 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014