Article

Confined and ejective eruptions of kink-unstable flux ropes

The Astrophysical Journal (Impact Factor: 6.73). 07/2005; DOI: 10.1086/462412
Source: arXiv

ABSTRACT The ideal helical kink instability of a force-free coronal magnetic flux rope, anchored in the photosphere, is studied as a model for solar eruptions. Using the flux rope model of Titov & Demoulin (1999} as the initial condition in MHD simulations, both the development of helical shape and the rise profile of a confined (or failed) filament eruption (on 2002 May 27) are reproduced in very good agreement with the observations. By modifying the model such that the magnetic field decreases more rapidly with height above the flux rope, a full (or ejective) eruption of the rope is obtained in very good agreement with the developing helical shape and the exponential-to-linear rise profile of a fast coronal mass ejection (CME) (on 2001 May 15). This confirms that the helical kink instability of a twisted magnetic flux rope can be the mechanism of the initiation and the initial driver of solar eruptions. The agreement of the simulations with properties that are characteristic of many eruptions suggests that they are often triggered by the kink instability. The decrease of the overlying field with height is a main factor in deciding whether the instability leads to a confined event or to a CME. Comment: minor update to conform to printed version; typo in table corrected

1 Bookmark
 · 
77 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes new capabilities for operational geomagnetic Disturbance storm time (Dst) index forecasts. We present a data‐driven, deterministic algorithm called Anemomilos for forecasting Dst out to a maximum of 6 days for large, medium, and small storms, depending upon transit time to the Earth. This capability is used for operational satellite management and debris avoidance in Low Earth Orbit (LEO). Anemomilos has a 15 min cadence, 1 h time granularity, 144 h prediction window (+6 days), and up to 1 h latency. A new finding is that nearly all flare events above a certain irradiance threshold, occurring within a defined solar longitude/latitude region and having sufficient estimated liftoff velocity of ejected material, will produce a geoeffective Dst perturbation. Three solar observables are used for operational Dst forecasting: flare magnitude, integrated flare irradiance through time, and event location. Magnitude is a proxy for ejecta quantity or mass and, combined with speed derived from the integrated flare irradiance, represents the kinetic energy. Speed is estimated as the line‐of‐sight velocity for events within 45° radial of solar disk center. Storms resulting from high‐speed streams emanating from coronal holes are not modeled or predicted. A new result is that solar disk, not limb, observable features are used for predictive techniques. Comparisons between Anemomilos predicted and measured Dst for every hour over 25 months in three continuous time frames between 2001 (high solar activity), 2005 (low solar activity), and 2012 (rising solar activity) are shown. The Anemomilos operational algorithm was developed for a specific customer use related to thermospheric mass density forecasting. It is an operational space weather technology breakthrough using solar disk observables to predict geomagnetically effective Dst up to several days at 1 h time granularity. Real‐time forecasts are presented at http://sol.spacenvironment.net/~sam_ops/index.html?
    Space Weather 01/2013; 11(9). · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Solar flares stem from the reconnection of twisted magnetic field lines in the solar photo-sphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting flux tubes anchored in the plasma and the energy ejections resulting when they recombine. The mechanism for energy accumulation and release in the flow is reminiscent of self-organized criticality. From this model, we suggest the origin for two important and widely studied properties of solar flare statistics, including the time–energy correlations. We first propose that the scale-free energy distribution of solar flares is largely due to the twist exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and time–energy correlations appear to arise from the tube–tube interactions. The agreement with satellite measurements is encouraging.
    Nature Communications 09/2014; 5:6035. · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context: Basic observational parameters of a coronal mass ejection (CME) are its speed and angular width. Measurements of the CME speed and angular width are severely influenced by projection effects. Aims: The goal of this paper is to investigate a statistical relationship between the plane-of-sky speeds of CMEs and the direction of their propagation, hopefully providing an estimate of the true speeds of CMEs. Methods: We analyze the correlation between the plane-of-sky velocity and the position of the CME source region, employing several non-halo CME samples. The samples are formed applying various restrictions to avoid crosstalk of relevant parameters. For example, we select only CMEs observed to radial distances larger than 10 solar radii; we omit CMEs showing a considerable acceleration in the considered distance range and treat CMEs of different angular widths separately. Finally, we combine these restriction criteria, up to the limits beyond which the statistical significance of the results becomes ambiguous. Results: A distinct anti-correlation is found between the angular width of CMEs and their source-region position, clearly showing an increasing trend towards the disc center. Similarly, all of the considered subsamples show a correlation between the CME projected speed and the distance of the source region from the disc center. On average, velocities of non-halo limb-CMEs are 1.5-2 times higher than in the case of non-halo CMEs launched from regions located close to the disc center. Conclusions: Unfortunately, the established empirical relationships provide only a rough estimate of the velocity correction as a function of the source-region location. To a certain degree, the results can be explained in terms of CME cone models, but only after taking crosstalk of various parameters and observational artifacts into account.
    Astronomy and Astrophysics 07/2007; 469(1):339-346. · 5.08 Impact Factor

Full-text

Download
0 Downloads
Available from