Confined and ejective eruptions of kink-unstable flux ropes

The Astrophysical Journal (Impact Factor: 6.28). 07/2005; DOI: 10.1086/462412
Source: arXiv

ABSTRACT The ideal helical kink instability of a force-free coronal magnetic flux rope, anchored in the photosphere, is studied as a model for solar eruptions. Using the flux rope model of Titov & Demoulin (1999} as the initial condition in MHD simulations, both the development of helical shape and the rise profile of a confined (or failed) filament eruption (on 2002 May 27) are reproduced in very good agreement with the observations. By modifying the model such that the magnetic field decreases more rapidly with height above the flux rope, a full (or ejective) eruption of the rope is obtained in very good agreement with the developing helical shape and the exponential-to-linear rise profile of a fast coronal mass ejection (CME) (on 2001 May 15). This confirms that the helical kink instability of a twisted magnetic flux rope can be the mechanism of the initiation and the initial driver of solar eruptions. The agreement of the simulations with properties that are characteristic of many eruptions suggests that they are often triggered by the kink instability. The decrease of the overlying field with height is a main factor in deciding whether the instability leads to a confined event or to a CME. Comment: minor update to conform to printed version; typo in table corrected

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Solar eruptions are usually associated with a variety of phenomena occurring in the low corona before, during, and after the onset of eruption. Though easily visible in coronagraph observations, so-called stealth coronal mass ejections (CMEs) do not obviously exhibit any of these low-coronal signatures. The presence or absence of distinct low-coronal signatures can be linked to different theoretical models to establish the mechanisms by which the eruption is initiated and driven. In this study, 40 CMEs without low-coronal signatures occurring in 2012 are identified. Their observational and kinematic properties are analyzed and compared to those of regular CMEs. Solar eruptions without clear on-disk or low-coronal signatures can lead to unexpected space weather impacts, since many early warning signs for significant space weather activity are not present in these events. A better understanding of their initiation mechanism(s) will considerably improve the ability to predict such space weather events.
    The Astrophysical Journal 10/2014; 795(1):49. · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Solar flares stem from the reconnection of twisted magnetic field lines in the solar photo-sphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting flux tubes anchored in the plasma and the energy ejections resulting when they recombine. The mechanism for energy accumulation and release in the flow is reminiscent of self-organized criticality. From this model, we suggest the origin for two important and widely studied properties of solar flare statistics, including the time–energy correlations. We first propose that the scale-free energy distribution of solar flares is largely due to the twist exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and time–energy correlations appear to arise from the tube–tube interactions. The agreement with satellite measurements is encouraging.
    Nature Communications 09/2014; 5:6035. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This publication provides an overview of magnetic fields in the solar atmosphere with the focus lying on the corona. The solar magnetic field couples the solar interior with the visible surface of the Sun and with its atmosphere. It is also responsible for all solar activity in its numerous manifestations. Thus, dynamic phenomena such as coronal mass ejections and flares are magnetically driven. In addition, the field also plays a crucial role in heating the solar chromosphere and corona as well as in accelerating the solar wind. Our main emphasis is the magnetic field in the upper solar atmosphere so that photospheric and chromospheric magnetic structures are mainly discussed where relevant for higher solar layers. Also, the discussion of the solar atmosphere and activity is limited to those topics of direct relevance to the magnetic field. After giving a brief overview about the solar magnetic field in general and its global structure, we discuss in more detail the magnetic field in active regions, the quiet Sun and coronal holes.
    Astronomy and Astrophysics Review 10/2014; 22(1). · 13.31 Impact Factor


Available from