Article

Acquired reversible autistic syndrome in acute encephalopathic illness in children.

JAMA Neurology (Impact Factor: 7.01). 04/1981; 38(3):191-4. DOI: 10.1001/archneur.1981.00510030085013
Source: PubMed

ABSTRACT In seeking the neurologic substrate of the autistic syndrome of childhood, previous studies have implicated the medial temporal lobe or the ring of mesolimbic cortex located in the mesial frontal and temporal lobes. During an acute encephalopathic illness, a clinical picture developed in three children that was consistent with infantile autism. This development was reversible. It was differentiated from acquired epileptic aphasia, and the language disorder was differentiated aphasia. One child has rises in serum herpes simplex titers, and a computerized tomographic (CT) scan revealed an extensive lesion of the temporal lobes, predominantly on the left. The other two, with similar clinical syndromes, had normal CT scans, and no etiologic agent was defined. These cases are examples of an acquired and reversible autistic syndrome in childhood, emphasizing the clinical similarities to bilateral medial temporal lobe disease as described in man, including the Klüver-Bucy syndrome seen in postencephalitic as well as postsurgical states.

0 Followers
 · 
167 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism, a member of the pervasive developmental disorders (PDDs), has been increasing dramatically since its description by Leo Kanner in 1943. First estimated to occur in 4 to 5 per 10,000 children, the incidence of autism is now 1 per 110 in the United States, and 1 per 64 in the United Kingdom, with similar incidences throughout the world. Searching information from 1943 to the present in PubMed and Ovid Medline databases, this review summarizes results that correlate the timing of changes in incidence with environmental changes. Autism could result from more than one cause, with different manifestations in different individuals that share common symptoms. Documented causes of autism include genetic mutations and/or deletions, viral infections, and encephalitis following vaccination. Therefore, autism is the result of genetic defects and/or inflammation of the brain. The inflammation could be caused by a defective placenta, immature blood-brain barrier, the immune response of the mother to infection while pregnant, a premature birth, encephalitis in the child after birth, or a toxic environment.
    Journal of Immunotoxicology 02/2011; 8(1):68-79. DOI:10.3109/1547691X.2010.545086 · 1.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Converging lines of clinical and epidemiological evidence suggest that viral infections in early developmental stages may be a causal factor in neuropsychiatric disorders such as schizophrenia, bipolar disorder, and autism-spectrum disorders. This etiological link, however, remains controversial in view of the lack of consistent and reproducible associations between viruses and mental illness. Animal models of virus-induced neurobehavioral disturbances afford powerful tools to test etiological hypotheses and explore pathophysiological mechanisms. Prenatal or neonatal inoculations of neurotropic agents (such as herpes-, influenza-, and retroviruses) in rodents result in a broad spectrum of long-term alterations reminiscent of psychiatric abnormalities. Nevertheless, the complexity of these sequelae often poses methodological and interpretational challenges and thwarts their characterization. The recent conceptual advancements in psychiatric nosology and behavioral science may help determine new heuristic criteria to enhance the translational value of these models. A particularly critical issue is the identification of intermediate phenotypes, defined as quantifiable factors representing single neurochemical, neuropsychological, or neuroanatomical aspects of a diagnostic category. In this paper, we examine how the employment of these novel concepts may lead to new methodological refinements in the study of virus-induced neurobehavioral sequelae through animal models.
    Interdisciplinary Perspectives on Infectious Diseases 05/2010; 2010(1687-708X):380456. DOI:10.1155/2010/380456
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism is a severe disorder that involves both genetic and environmental factors. Expression profiling of the superior temporal gyrus of six autistic subjects and matched controls revealed increased transcript levels of many immune system-related genes. We also noticed changes in transcripts related to cell communication, differentiation, cell cycle regulation and chaperone systems. Critical expression changes were confirmed by qPCR (BCL6, CHI3L1, CYR61, IFI16, IFITM3, MAP2K3, PTDSR, RFX4, SPP1, RELN, NOTCH2, RIT1, SFN, GADD45B, HSPA6, HSPB8 and SERPINH1). Overall, these expression patterns appear to be more associated with the late recovery phase of autoimmune brain disorders, than with the innate immune response characteristic of neurodegenerative diseases. Moreover, a variance-based analysis revealed much greater transcript variability in brains from autistic subjects compared to the control group, suggesting that these genes may represent autism susceptibility genes and should be assessed in follow-up genetic studies.
    Neurobiology of Disease 07/2008; 30(3):303-11. DOI:10.1016/j.nbd.2008.01.012 · 5.20 Impact Factor