Herpes simplex virus encephalitis: intrathecal synthesis of oligoclonal virus-specific IgG, IgA and IgM antibodies.

Journal of Neurology (Impact Factor: 3.58). 02/1982; 228(1):25-38. DOI: 10.1007/BF00313407
Source: PubMed

ABSTRACT Paired specimens of serum and CSF from seven patients with acute herpes simplex virus encephalitis were examined during the acute illness or the convalescent stage or during both stages. Imprint immunofixation analyses of viral antibodies separated by agarose electrophoresis and by electrofocusing disclosed intrathecal production of herpes simplex virus IgG antibodies in all seven patients, and of IgA and IgM antibodies in six and three of six patients, respectively. Intrathecal production of herpes simplex virus-specific IgG and IgA was observed in two patients from whom samples were collected after 1 year, while intrathecal production of virus-specific IgM was not demonstrated later than 5 weeks after onset. The intrathecally synthesized IgG and IgM, and to a lesser extent IgA antibodies displayed oligoclonal characteristics. Oligoclonal bands of IgG were observed in the CSF of all patients. Evidence is presented to show that the bulk of the oligoclonal CSF IgG represents herpes simplex virus-specific antibodies. Intrathecally synthesized populations of herpes simplex virus antibodies cross-reacting with varicella-zoster virus were identified in three of the patients.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although partly disease-irrelevant, intrathecal immunoglobulins (Ig) synthesis is a typical feature of multiple sclerosis (MS) and is driven by the tertiary lymphoid organs (TLO). A long-known hallmark of this non-specific intrathecal synthesis is the MRZ pattern, an intrathecal synthesis of Ig against measles, rubella, and zoster viruses. This non-specific intrathecal synthesis could also be directed against a wide range of pathogens. However, it is highly problematic since brain TLO should not be able to drive the clonal expansion of lymphocytes against alien antigens that are thought to be absent in MS brain. We propose to explain the paradox of non-specific intrathecal synthesis by discussing the natural properties of TLO. In fact, besides local antigen-driven clonal expansion, circulating plasmablasts and plasma cells (PC) are non-specifically recruited from blood and gain access to survival niches in the inflammatory CNS. This mechanism, which has been described in other inflammatory disorders, takes place in the TLO. As a consequence, PCs recruited in brain mirror the individual's history of immunization and intrathecal synthesis of IgG in MS may target a broad range of common infectious agents, a hypothesis in line with epidemiological data. Moreover, the immunization schedule and its timing may interfere with PC recruitment. If this hypothesis is correct, the reaction against EBV appears paradoxical: although early infection of MS patients is systematic, intrathecal synthesis is far lower than expected, suggesting a crucial interaction between MS onset and timing of EBV infection. A growing body of evidence suggests that the non-specific intrathecal synthesis observed in MS is also common in many chronic CNS inflammatory disorders. Assuming that cortical TLO in MS are associated with typical sub-pial lesions, we have coined the concept of "TLO-pathy" to describe these lesions and take examples of them from non-MS disorders. Lastly, we propose that intrathecal synthesis could be considered a strong hallmark of CNS TLO and might be used to monitor future TLO-targeted therapies.
    Frontiers in Neurology 01/2014; 5:27.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herpes simplex virus (HSV) infections of the central nervous system (CNS) are infrequent in occurrence, but potentially devastating in outcome. Tremendous advances in the ability to diagnose HSV CNS disease without the need for invasive procedures such as brain biopsy, coupled with the establishment of safe and effective antiviral therapies, have improved overall outcomes. However, the seriousness of HSV CNS infections requires that clinicians maintain a high index of suspicion to initiate evaluation under suitable circumstances. In addition, clinicians need an understanding of the clinical disease course in order to interpret the diagnostic tests appropriately. Intravenous aciclovir remains the mainstay of antiviral management. Even with recent treatment advances and enhanced awareness, potentially devastating outcomes remain possible.
    Herpes: the journal of the IHMF 07/2007; 14(1):11-6.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relationship between immune responses to self-antigens and autoimmune disease is unclear. In contrast to its animal model experimental autoimmune encephalomyelitis (EAE), which is driven by T cell responses to myelin antigens, the target antigen of the intrathecal immune response in multiple sclerosis (MS) has not been identified. Although the immune response in MS contributes significantly to tissue destruction, the action of immunocompetent cells within the central nervous system (CNS) may also hold therapeutic potential. Thus, treatment of MS patients with glatiramer acetate triggers a protective immune response. Here we review the immunopathogenesis of MS and some recent findings on the mechanism of glatiramer acetate (GA).
    Toxins 04/2010; 2(4):856-77. · 2.13 Impact Factor