Article

Isolation of the thymidylate synthetase gene (TMP1) by complementation in Saccharomyces cerevisiae.

Molecular and Cellular Biology (Impact Factor: 5.37). 05/1982; 2(4):437-42. DOI: 10.1128/MCB.2.4.437
Source: PubMed

ABSTRACT The structural gene (TMP1) for yeast thymidylate synthetase (thymidylate synthase; EC 2.1.1.45) was isolated from a chimeric plasmid bank by genetic complementation in Saccharomyces cerevisiae. Retransformation of the dTMP auxotroph GY712 and a temperature-sensitive mutant (cdc21) with purified plasmid (pTL1) yielded Tmp+ transformants at high frequency. In addition, the plasmid was tested for the ability to complement a bacterial thyA mutant that lacks functional thymidylate synthetase. Although it was not possible to select Thy+ transformants directly, it was found that all pTL1 transformants were phenotypically Thy+ after several generations of growth in nonselective conditions. Thus, yeast thymidylate synthetase is biologically active in Escherichia coli. Thymidylate synthetase was assayed in yeast cell lysates by high-pressure liquid chromatography to monitor the conversion of [6-3H]dUMP to [6-3H]dTMP. In protein extracts from the thymidylate auxotroph (tmp1-6) enzymatic conversion of dUMP to dTMP was barely detectable. Lysates of pTL1 transformants of this strain, however, had thymidylate synthetase activity that was comparable to that of the wild-type strain.

1 Bookmark
 · 
151 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An adequate supply of nucleotides is essential for DNA replication and DNA repair. Moreover, inhibition of TTP synthesis can cause cell death by a poorly characterized mechanism called thymine-less death. In the yeast Saccharomyces cerevisiae, the genes encoding thymidylate synthetase (CDC21) and thymidylate kinase (CDC8) are both essential for de novo TTP synthesis. The effects of temperature-sensitive mutations in these genes have been characterized and, curiously, the phenotypes displayed by cells harboring them include shortened telomeric repeat tracts. This finding raised the possibility that the enzyme telomerase is very sensitive to TTP-pools. We tested this possibility in vivo by assessing telomerase-dependent extension in situations of lowered TTP supply. The results show that the above-mentioned short telomere phenotype is not a consequence of an inability of telomerase to elongate telomeres when TTP synthesis is impaired. Moreover, this telomere shortening was abolished in cells harboring a mutation in DNA polymerase alpha. Previously, this same mutation was shown to affect the coordination between conventional replication and telomerase-mediated extension. These results thus re-emphasize the importance of the interplay between conventional replication and telomerase-mediated addition of telomeric repeats in telomere replication.
    Nucleic Acids Research 02/2005; 33(2):704-13. · 8.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The budding yeast Saccharomyces cerevisiae is unable to incorporate exogenous nucleosides into DNA. We have made a number of improvements to existing strategies to reconstitute an efficient thymidine salvage pathway in yeast. We have constructed strains that express both a nucleoside kinase as well as an equilibrative nucleoside transporter. By also deleting the gene encoding thymidylate synthase (CDC21) we have constructed strains that are entirely dependent upon exogenous thymidine for viability and that can grow with normal kinetics at low thymidine concentrations. Using this novel approach, we show that depletion of a single deoxyribonucleoside causes reversible arrest of cells in S phase with concomitant phosphorylation and activation of the S phase checkpoint kinase, Rad53. We show that this strain also efficiently incorporates the thymidine analogue, BrdU, into DNA and can be used for pulse-chase labelling.
    Nucleic Acids Research 11/2003; 31(19):e120. · 8.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The budding yeast Saccharomyces cerevisiae is characterized by asymmetric cell division and the asymmetric inheritance of spindle components during normal vegetative growth and during certain specialized cell divisions. There has been a longstanding interest in the possibility that yeast chromosomes segregate non-randomly during mitosis and that some of the differences between mother and daughter cells could be explained by selective chromatid segregation. This review traces the history of the experiments to determine if there is biased chromatid segregation in yeast. The special aspects of spindle morphogenesis and behavior in yeast that could accommodate a mechanism for biased segregation are discussed. Finally, a recent experiment demonstrated that yeast chromatids segregate randomly without mother-daughter bias in a common laboratory strain grown under routine laboratory conditions.
    Chromosome Research 05/2013; 21(3):193-202. · 2.85 Impact Factor

Full-text

View
1 Download
Available from