The interaction of arylazido ubiquinone derivative with mitochondrial ubiquinol-cytochrome c reductase.

Journal of Biological Chemistry (Impact Factor: 4.6). 10/1982; 257(17):10215-21.
Source: PubMed
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Papain digestion of subunits of mitochondrial b-c1 complex (ubiquinol-cytochrome-c reductase) isolated from bovine heart and its impact on redox and proton-motive activity of the whole complex were investigated. A 5-min incubation of the oxidized enzyme with papain resulted in digestion of core protein II and the 14-kDa subunit, and limited digestion of the iron-sulfur protein. This was accompanied by a small inhibition of the rate of electron flow and a marked inhibition of proton translocation with decrease of the H+/e- ratio for proton pumping. When papain treatment was performed on the b-c1 complex pre-reduced with ascorbate, partial proteolysis of the iron-sulfur protein and the 14-kDa subunit was greatly accelerated and the electron transfer activity was more markedly inhibited. In all the conditions tested, digestion of the Rieske iron-sulfur protein paralleled the inhibition of reductase activity. Under ascorbate-reduced conditions, papain digestion of the complex gave rise to an alteration of the EPR line shape of the iron-sulfur cluster, namely a broadening and shift of the gx negative peak and destabilization of the protein-bound antimycin-sensitive semiquinone. The latter paralleled the decrease in electron transfer activity and inhibition of antimycin-sensitive cytochrome-b reduction. The results obtained indicate the following. 1. Core protein II and the 14-kDa protein may contribute to the proton-conducting pathway(s) from the matrix aqueous phase to the primary protolytic redox center (protein-bound semiquinone/quinone couple). 2. The iron-sulfur protein contributes, together with other protein(s) (the 14-kDa subunit), to the stabilization of the protein-bound antimycin-sensitive semiquinone species in a protein pocket in the complex. 3. Reduction of the high-potential redox centers induces a change in the quaternary structure of the complex which results in an enhanced surface exposure of segments of the 14-kDa protein and the iron-sulfur protein.
    European Journal of Biochemistry 03/1989; 179(3):535-40. DOI:10.1111/j.1432-1033.1989.tb14580.x · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The arrangement and function of the redox centers of the mammalian bc1 complex is described on the basis of structural data derived from amino acid sequence studies and secondary structure predictions and on the basis of functional studies (i.e., EPR data, inhibitor studies, and kinetic experiments). Two ubiquinone reaction centers do exist--a QH2 oxidation center situated at the outer, cytosolic surface of the cristae membrane (Q0 center), and a Q reduction center (Qi center) situated more to the inner surface of the cristae membrane. The Q0 center is formed by the b-566 domain of cytochrome b, the FeS protein, and maybe an additional small subunit, whereas the Qi center is formed by the b-562 domain of cytochrome b and presumably the 13.4 kDa protein ("QP-C"). The "Q binding proteins" are proposed to be protein subunits of the Q reaction centers of various multiprotein complexes. The path of electron flow branches at the Q0 center, half of the electrons flowing via the high-potential cytochrome chain to oxygen and half of the electrons cycling back into the Q pool via the cytochrome b path connecting the two Q reaction centers. During oxidation of QH2, 2H+ are released to the cytosolic space and during reduction of Q, 2H+ are taken up from the matrix side, resulting in a net transport across the membrane of 2H+ per e- flown from QH2 to cytochrome c, the H+ being transported across the membrane as H (H+ + e-) by the mobile carrier Q. The authors correct their earlier view of cytochrome b functioning as a H+ pump, proposing that the redox-linked pK changes of the acidic groups of cytochrome b are involved in the protonation/deprotonation processes taking place during the reduction and oxidation of Q. The reviewers stress that cytochrome b is in equilibrium with the Q pool via the Qi center, but not via the Q0 center. Their view of the mechanisms taking place at the reductase is a Q cycle linked to a Q-pool where cytochrome b is acting as an electron pump.
    Journal of Bioenergetics 07/1986; 18(3):157-79. DOI:10.1007/BF00743462 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence recovery after photobleaching was used to determine the diffusion coefficients of the oxidation-reduction (redox) components ubiquinone, complex III (cytochromes b-c1), cytochrome c, and complex IV (cytochrome oxidase) of the mitochondrial inner membrane. All redox components diffuse in two dimensions as common-pool electron carriers. Cytochrome c diffuses in two and three dimensions concomitantly, and its diffusion rate, unlike that of all other redox components, is modulated along with its activity by ionic strength. The diffusion coefficients established in this study reveal that the theoretical diffusion-controlled collision frequencies of all redox components are greater than their experimental maximum (uncoupled) turnover numbers. Since electron transport is slower than the theoretical limit set by the lateral diffusion of the redox components, ordered chains, assemblies, or aggregates of redox components are not necessary to account for electron transport. Rather, mitochondrial electron transport is diffusion coupled, consistent with a "random-collision model" for electron transport.
    Proceedings of the National Academy of Sciences 06/1984; 81(9):2606-10. DOI:10.1073/pnas.81.9.2606 · 9.81 Impact Factor


1 Download
Available from