Article

Histamine and the heart.

Canadian Journal of Physiology and Pharmacology (Impact Factor: 1.56). 07/1984; 62(6):720-6. DOI: 10.1139/y84-119
Source: PubMed

ABSTRACT Histamine has been known as a cardiac stimulant for over 70 years. Work in our laboratory over the past decade has established that histamine receptors exist in the hearts of various species. The type of histamine receptor varies not only between species but also in the various regions of the heart. In the guinea pig heart H1 receptors are found in left atria and ventricles while H2 receptors are found in right atria and are the predominant histamine receptor in the ventricles. Rabbit atria contain both H1 and H2 receptors while the ventricles appear to possess only H1. Rat and cat heart do not seem to have histamine receptors and the positive inotropic and chronotropic effects elicited by histamine in cardiac preparations of these species are due to the release of noradrenaline. Dog heart contains H1 receptors while human heart has H2 receptors. In all cases H2 receptors are associated with adenylate cyclase and stimulation of such receptors results in an increase in cyclic AMP levels. H1 receptors are not associated with cyclic nucleotides in the heart. There are certain similarities between beta-adrenergic and H2-histaminergic receptors as well as between alpha-adrenergic and H1-histaminergic receptors. Stimulation of either histamine receptor must result in an increase in the free calcium ion concentration in the cardiac cell but the mechanisms involved are obviously different.

4 Bookmarks
 · 
627 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with high serum immunoglobulin E levels were reported to be protected against sudden death during acute myocardial infarction. The protection mechanism might be attributed to the facilitation of histamine release from sensitized mast cells; however, this remains to be clarified. In this study, we examined the influence of sensitization on ventricular fibrillation (VF) induced by myocardial hypoxia/reoxygenation (H/R). Guinea pigs were actively sensitized by subcutaneous injection of ovalbumin in Bordetella pertussis vaccine. Hearts isolated from non-sensitized and sensitized guinea pigs were subjected to 30-min hypoxia / 30-min reoxygenation using a Langendorff apparatus. The amount of histamine released in the sensitized guinea-pig hearts was elevated, and the duration of VF was found to be reduced. The treatment with a histamine H2-receptor antagonist inhibited the reduction of VF duration. Treatment of the non-sensitized hearts with the histamine H2-receptor agonist resulted in the decrease of VF duration to the same level as that in the sensitized hearts. In conclusion, these results suggest that the risk of sudden death during myocardial H/R may be attenuated in the sensitized hearts and that histamine H2-receptor activation due to the released histamine may be involved in the protective effect.
    Journal of Pharmacological Sciences 01/2006; 99(4):400-7. · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The receptor type mediating the positive inotropic effect of histamine was examined in left atria from neonatal guinea pigs. The positive inotropic effect of histamine, as well as its action potential prolonging effect, was antagonized by ranitidine, but not by chlorpheniramine or thiperamide. The positive inotropic effect was enhanced by isobutylmethylxantine. Receptor binding studies revealed the presence of both H₁ and H₂ receptor types. These results suggest that the positive inotropic effect of histamine in the neonatal guinea-pig atrium is mediated by H₂ receptors.
    Biological & Pharmaceutical Bulletin 01/2010; 33(12):2033-5. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To review and summarize current information regarding the pathophysiology and clinical manifestations associated with anaphylaxis in dogs and cats. The etiology, diagnosis, treatment, and prognosis is discussed. Anaphylaxis is a systemic, type I hypersensitivity reaction that often has fatal consequences. Many of the principal clinical manifestations involve organs where mast cell concentrations are highest: the skin, the lungs, and the gastrointestinal tract. Histamine and other deleterious inflammatory mediators promote vascular permeability and smooth muscle contraction; they are readily released from sensitized mast cells and basophils challenged with antigen. Anaphylaxis may be triggered by a variety of antigens including insect and reptile venom, a variety of drugs, vaccines, and food. Anaphylaxis is a clinical diagnosis made from a collection of signs and symptoms. It is most commonly based on pattern recognition. Differential diagnoses include severe asthma, pheocromocytoma, and mastocytosis. Epinephrine is considered the drug of choice for the treatment of anaphylaxis. It acts primarily as a vasopressor in improving hemodynamic recovery. Adjunctive treatments include fluid therapy, H1 and H2 antihistamines, corticosteroids, and bronchodilators; however, these do not substitute for epinephrine. Prognosis depends on the severity of the clinical signs. The clinical signs will vary among species and route of exposure. The most severe clinical reactions are associated when the antigen is administered parenterally.
    Journal of veterinary emergency and critical care (San Antonio, Tex. : 2001). 07/2013;