Cyclosporine: a new immunosuppressive agent for organ transplantation.

Annals of internal medicine (Impact Factor: 16.1). 12/1984; 101(5):667-82.
Source: PubMed

ABSTRACT Cyclosporine, a cyclic endecapeptide of fungal origin, has recently been released for use in clinical transplantation. Trials in kidney, heart, liver and bone marrow recipients were encouraging: 1-year graft survival rates were 70% to 80% for kidney and heart recipients, and 60% to 65% for liver allograft recipients. Cyclosporine is also effective in treating bone marrow recipients with acute graft-versus-host disease. The drug selectively inhibits T-helper cell production of growth factors essential for B cell and cytotoxic T-cell differentiation and proliferation, while allowing expansion of suppressor T-cell populations. Drug absorption varies greatly, necessitating monitoring of drug level and individualization of therapy. Nephrotoxicity is the most frequent side effect of cyclosporine. An increased incidence of B-cell lymphomas seen when cyclosporine was used in conjunction with cytotoxic agents or anti-lymphocyte globulin has very rarely been observed when concomitant immunosuppression has been limited to low-dose corticosteroids. Lower initial doses of cyclosporine, followed by more rapid tapering may reduce the incidence of nephrotoxicity without compromising improved graft outcome.


Available from: Terry B. Strom, Jun 04, 2015
1 Follower
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The modelling pharmacokinetic profile of freeze-dried cyclosporine A-Eudragit S100 nanoparticles (CyA-S100-NP) was studied with a random two-way crossover study in dogs. The drug blood concentration was determined by internal standard HPLC method after oral administration of CyA-S100-NP and Neoral. Pharmacokinetics modellng parameters were calculated by 3P97modelling program. The concentration-time data were fitted as a two-compartment open model. The AUC of CyA-S100-NP was higher than that of Neoral (P<0.05), while the CL significantly decreased (P<0.05). The relative bioavailability of CyA-S100-NP were 135.9% compared with Neoral. The bioavailability of CyA was significantly improved. CyA-S100-NP was a potential drug for developing a new CyA nanoparticles solid formulation.
    Physics Procedia 12/2012; 33:732-737. DOI:10.1016/j.phpro.2012.05.128
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Helminth infections are responsible for a considerable public health burden, yet the current drug armamentarium is small. Given the high cost of drug discovery and development, the high failure rates and the long duration to develop novel treatments, drug repurposing circumvents these obstacles by finding new uses for compounds other than those they were initially intended to treat. In the present review, we summarize in vivo and clinical trial findings testing clinical candidates and marketed drugs against schistosomes, food-borne trematodes, soil-transmitted helminths, Strongyloides stercoralis, the major human filariases lymphatic filariasis and onchocerciasis, taeniasis, neurocysticercosis and echinococcosis. While expanding the applications of broad-spectrum or veterinary anthelmintics continues to fuel alternative treatment options, antimalarials, antibiotics, antiprotozoals and anticancer agents appear to be producing fruitful results as well. The trematodes and nematodes continue to be most investigated, while cestodal drug discovery will need to be accelerated. The most clinically advanced drug candidates include the artemisinins and mefloquine against schistosomiasis, tribendimidine against liver flukes, oxantel pamoate against trichuriasis, and doxycycline against filariasis. Preclinical studies indicate a handful of promising future candidates, and are beginning to elucidate the broad-spectrum activity of some currently used anthelmintics. Challenges and opportunities are further discussed.
    12/2014; 4(3). DOI:10.1016/j.ijpddr.2014.07.002