The antibody response in Lyme disease.

The Yale journal of biology and medicine 11/1983; 57(4):561-5.
Source: PubMed

ABSTRACT We determined the antibody response against the Ixodes dammini spirochete in Lyme disease patients by indirect immunofluorescence and an enzyme-linked immunosorbent assay (ELISA). The specific IgM response became maximal three to six weeks after disease onset, and then declined, although titers sometimes remained elevated during later disease. Specific IgM levels correlated directly with total serum IgM. The specific IgG response, often delayed initially, was nearly always present during neuritis and arthritis, and frequently remained elevated after months of remission. Although results obtained by indirect immunofluorescence and the ELISA were similar, the ELISA was more sensitive and specific. Cross-reactive antibodies from patients with other spirochetal infections were blocked by absorption of sera with Borrelia hermsii, but titers of Lyme disease sera were also decreased. To further characterize the specificity of the humoral immune response against the I. dammini spirochete, 35S-methionine-labeled spirochetal antigens were identified by immunoprecipitation with sera from Lyme arthritis patients. These polypeptides had molecular weights of 62, 60, 47, 37, 22, 18, and 15 kDa, and were not recognized by control sera. We conclude that the ELISA, without absorption, is the best method to assay the humoral immune response in Lyme disease, and we have identified methionine-containing spirochetal polypeptides that may be important in Lyme arthritis.

  • Source
    Lyme Disease, 02/2012; , ISBN: 978-953-51-0057-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lyme disease, or Lyme borreliosis, is an emerging infectious disease caused by bacteria belonging to the genus borrelia. Borrelia burgdorferi, in the strict sense. This book deals mostly with the molecular biology of the Lyme disease agent orrelia burgdorferi. It has been written by experts in the relevant field and is tailored to the need of researchers, advanced students of biology, molecular biology, molecular genetics of microorganism. It will also be of use to infectious disease experts and people in other disciplines needing to know more about Lyme borreliosis. The book contains chapters on the molecular biology of the Lyme disease agent, zoonotic peculiarities of Bb, advancement in Bb antibody testing, the serology diagnostic schemes in Bb, discovering Lyme disease in ticks and dogs, adaptation to glucosamine starvation in Bb, and porins in the genus borrelia.
    Edited by Ali Karami and others, 01/2012; Intech.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lyme borreliosis (LB), synonymous with the often-used term Lyme disease, is an infectious disease caused by the spirochetal bacterium Borrelia burgdorferi. LB is the most frequent vector-borne disease in humans in the Northern Hemisphere. In animals, clinically apparent disease is found primarily in dogs. Severe polyarthritis, fever and lameness in dogs are reported from the main endemic areas of North America: the New England States, and eastern parts of the United States; several cases of LB are also seen in California and the Midwest. Because of the difficulties in finding sufficient indicative clinical signs, additional information (detailed case history, laboratory testing for antibodies) is especially important to make the clinical diagnosis of Lyme borreliosis. This article reviews the etiology, diagnosis, therapy, and prevention of LB.
    Veterinary Clinics of North America Small Animal Practice 11/2010; 40(6):1103-19. DOI:10.1016/j.cvsm.2010.07.011 · 1.04 Impact Factor


Available from