A hominine hip bone, KNM-ER 3228, from East Lake Turkana, Kenya.

American Journal of Physical Anthropology (Impact Factor: 2.48). 05/1984; 63(4):371-8. DOI: 10.1002/ajpa.1330630404
Source: PubMed

ABSTRACT A male hominine partial hip bone, KNM -ER 3228, from East Lake Turkana , Kenya is described. In most of its features this specimen resembles modern human male hip bones. This is especially true for functional features related to weight transfer from the trunk to the pelvis and within the pelvis, and to the effective action of musculature arising from the pelvis during the performance of the modern human type of bipedalism . KNM -ER 3228 is very similar to the Olduvai Hominid 28 and the Arago XLIV hip bones, both attributed to Homo erectus .

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite a rich African Plio-Pleistocene hominin fossil record, the ancestry of Homo and its relation to earlier australopithecines remain unresolved. Here we report on two partial skeletons with an age of 1.95 to 1.78 million years. The fossils were encased in cave deposits at the Malapa site in South Africa. The skeletons were found close together and are directly associated with craniodental remains. Together they represent a new species of Australopithecus that is probably descended from Australopithecus africanus. Combined craniodental and postcranial evidence demonstrates that this new species shares more derived features with early Homo than any other australopith species and thus might help reveal the ancestor of that genus.
    Science 04/2010; 328(5975):195-204. · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fossil record of the hominin pelvis reflects important evolutionary changes in locomotion and parturition. The partial pelves of two individuals of Australopithecus sediba were reconstructed from previously reported finds and new material. These remains share some features with australopiths, such as large biacetabular diameter, small sacral and coxal joints, and long pubic rami. The specimens also share derived features with Homo, including more vertically oriented and sigmoid-shaped iliac blades, greater robusticity of the iliac body, sinusoidal anterior iliac borders, shortened ischia, and more superiorly oriented pubic rami. These derived features appear in a species with a small adult brain size, suggesting that the birthing of larger-brained babies was not driving the evolution of the pelvis at this time.
    Science 09/2011; 333(6048):1407-11. · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: All early (Pliocene-Early Pleistocene) hominins exhibit some differences in proximal femoral morphology from modern humans, including a long femoral neck and a low neck-shaft angle. In addition, australopiths (Au. afarensis, Au. africanus, Au. boisei, Paranthropus boisei), but not early Homo, have an "anteroposteriorly compressed" femoral neck and a small femoral head relative to femoral shaft breadth. Superoinferior asymmetry of cortical bone in the femoral neck has been claimed to be human-like in australopiths. In this study, we measured superior and inferior cortical thicknesses at the middle and base of the femoral neck using computed tomography in six Au. africanus and two P. robustus specimens. Cortical asymmetry in the fossils is closer overall to that of modern humans than to apes, although many values are intermediate between humans and apes, or even more ape-like in the midneck. Comparisons of external femoral neck and head dimensions were carried out for a more comprehensive sample of South and East African australopiths (n = 17) and two early Homo specimens. These show that compared with modern humans, femoral neck superoinferior, but not anteroposterior breadth, is larger relative to femoral head breadth in australopiths, but not in early Homo. Both internal and external characteristics of the australopith femoral neck indicate adaptation to relatively increased superoinferior bending loads, compared with both modern humans and early Homo. These observations, and a relatively small femoral head, are consistent with a slightly altered gait pattern in australopiths, involving more lateral deviation of the body center of mass over the stance limb. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.
    American Journal of Physical Anthropology 01/2013; · 2.48 Impact Factor