Arousal and breathing responses to airway occlusion in healthy sleeping adults. J Appl Physiol


The arousal and breathing responses to total airway occlusion during sleep were measured in 12 normal subjects (7 males and 5 females) aged 25-36 yr. Subjects slept while breathing through a specially designed nosemask, which was glued to the nose with medical-grade silicon rubber. The lips were sealed together with a thin layer of Silastic. The nosemask was attached to a wide-bore (20 mm ID) rigid tube to allow a constant-bias flow of room air from a blower. Total airway occlusion was achieved by simultaneously inflating two rubber balloons fixed in the inspiratory and expiratory pipes. A total of 39 tests were done in stage III/IV nonrapid-eye movement (NREM) sleep in 11 subjects and 10 tests in rapid-eye-movement (REM) sleep in 5 subjects. The duration of total occlusion tolerated before arousal from NREM sleep varied widely (range 0.9-67.0 s) with a mean duration of 20.4 +/- 2.3 (SE) s. The breathing response to occlusion in NREM sleep was characterised by a breath-by-breath progressive increase in suction pressure achieved by an increase in the rate of inspiratory pressure generation during inspiration. In contrast, during REM sleep, arousal invariably occurred after a short duration of airway occlusion (mean duration 6.2 +/- 1.2 s, maximum duration 11.8 s), and the occlusion induced a rapid shallow breathing pattern. Our results indicate that total nasal occlusion during sleep causes arousal with the response during REM sleep being more predictable and with a generally shorter latency than that in NREM sleep.

4 Reads
  • Source
    • "Literature on this specific time interval to choose is very scarce. In one study, it was shown that the breathing response to a complete airway occlusion was 20.4 ± 2.3 sec during NREM and 6.2 ± 1.2 sec during REM [34]. The choice of a 15-second interval seems very reasonable but may need further investigation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT: Mechanical ventilation seems to occupy a major source in alteration in the quality and quantity of sleep among patients in intensive care. Quality of sleep is negatively affected with frequent patient-ventilator asynchronies and more specifically with modes of ventilation. The quality of sleep among ventilated patients seems to be related in part to the alteration between the capacities of the ventilator to meet patient demand. The objective of this study was to compare the impact of two modes of ventilation and patient-ventilator interaction on sleep architecture. Prospective, comparative crossover study in 14 conscious, nonsedated, mechanically ventilated adults, during weaning in a university hospital medical intensive care unit. Patients were successively ventilated in a random ordered cross-over sequence with neurally adjusted ventilatory assist (NAVA) and pressure support ventilation (PSV). Sleep polysomnography was performed during four 4-hour periods, two with each mode in random order. The tracings of the flow, airway pressure, and electrical activity of the diaphragm were used to diagnose central apneas and ineffective efforts. The main abnormalities were a low percentage of rapid eye movement (REM) sleep, for a median (25th-75th percentiles) of 11.5% (range, 8-20%) of total sleep, and a highly fragmented sleep with 25 arousals and awakenings per hour of sleep. Proportions of REM sleep duration were different in the two ventilatory modes (4.5% (range, 3-11%) in PSV and 16.5% (range, 13-29%) during NAVA (p = 0.001)), as well as the fragmentation index, with 40 ± 20 arousals and awakenings per hour in PSV and 16 ± 9 during NAVA (p = 0.001). There were large differences in ineffective efforts (24 ± 23 per hour of sleep in PSV, and 0 during NAVA) and episodes of central apnea (10.5 ± 11 in PSV vs. 0 during NAVA). Minute ventilation was similar in both modes. NAVA improves the quality of sleep over PSV in terms of REM sleep, fragmentation index, and ineffective efforts in a nonsedated adult population.
    Annals of Intensive Care 09/2011; 1(1):42. DOI:10.1186/2110-5820-1-42 · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obstructive sleep apnea syndrome (OSAS) is a sleep disorder in which the complete occlusion of the upper airway accompanies the cessation of airflow repeatedly during sleep, due to collapse of the soft tissues that surround and support the pharyngeal airway. As an under-diagnosed problem, OSAS affects 2% of the children population. The goal of this thesis is to investigate new computational tools for understanding normal upper airway mechanics and OSAS pathogenesis. In this thesis firstly 3D patient-specific computational fluid dynamics (CFD) models were developed to investigate the contributions of airway anatomical restrictions to the airflow and resistance in children with OSAS and matched control subjects. Modeling methods were validated by in-vitro experiments. Normal controls had significantly less pressure drop in the pharynx than the nasal passages, but in the OSAS cases maximum pressure drop in the nasopharynx ranged from 30% to 1700% higher than nasal pressure drop. These new findings suggest that the shape of pharynx is an important factor in driving internal pressure toward the collapse pressure. Simplification and verification for studying a large number of patients using simple lumped-parameter or axisymmetric models of pharynx were discussed. Pressure distribution and resistance in pharynx have been shown strongly correlated with the airway cross-section area profile, and the accuracy is also influenced by the length of the narrowed segment and the pressure recovery coefficient. Contributions of anatomical restriction on airway collapse are also investigated using a two-dimensional fluid structure interaction (FSI) model. The model couples internal flow with upper airway mechanics, and reveals that airway narrowing (percent of stenosis) could be also an important factor determining airway patency, besides clinical measurements Pcrit. The effects of upper airway muscle activation in response to negative pharyngeal pressure to maintain airway patency are impaired by the anatomical restriction. A lumped parameter model was developed to explore the effects of airway narrowing and nasal resistance on upper airway performance To study the structure and intrinsic tissue properties of the airway non-invasively, a modeling method was developed that extends published methods to determine material properties of passive diastolic myocardium. Spin-echo MR imaging, MRI tissue tagging, finite element analysis (FEA), and nonlinear optimization, are used to identify model structure and tissue properties of the deformable upper airway. The model incorporates airway architecture and intrinsic material properties, and has been validated by noninvasive MR tagging techniques. Baseline studies demonstrate correct qualitative response, and quantitative accuracy of the model desplacements. A parameter sensitivity study indicates that the airway collapsibility is most sensitive to the tongue mechanical property.
  • Source
Show more