Article

Bronchopulmonary dysplasia in the adult.

The American review of respiratory disease (Impact Factor: 10.19). 02/1983; 127(1):117-20.
Source: PubMed

ABSTRACT We describe 3 patients with adult respiratory distress syndrome that eventuated in a pathologic picture of honeycomb lung and a radiographic picture of variably cystic lung super-imposed on a background of diffuse alveolar infiltrates. All 3 patients had been treated with unusually high pressures of PEEP as well as high concentrations of oxygen for long periods of time (3 to 7 wk). Microscopically, the cystic structures in our patients appeared to be derived from collapse and fibrosis of the alveolar parenchyma with dilatation of the alveolar ducts. We suggest that this process is morphologically and radiographically similar to bronchopulmonary dysplasia as seen in the newborn.

0 Bookmarks
 · 
318 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Air-space enlargement may result from mechanical ventilation and/or lung infection. The aim of this study was to assess how mechanical ventilation and lung infection influence the genesis of bronchiolar and alveolar distention. Four groups of piglets were studied: non-ventilated-non-inoculated (controls, n = 5), non-ventilated-inoculated (n = 6), ventilated-non-inoculated (n = 6), and ventilated-inoculated (n = 8) piglets. The respiratory tract of intubated piglets was inoculated with a highly concentrated solution of Escherichia coli. Mechanical ventilation was maintained during 60 hours with a tidal volume of 15 ml/kg and zero positive end-expiratory pressure. After sacrifice by exsanguination, lungs were fixed for histological and lung morphometry analyses. Lung infection was present in all inoculated piglets and in five of the six ventilated-non-inoculated piglets. Mean alveolar and mean bronchiolar areas, measured using an analyzer computer system connected through a high-resolution color camera to an optical microscope, were significantly increased in non-ventilated-inoculated animals (+16% and +11%, respectively, compared to controls), in ventilated-non-inoculated animals (+49% and +49%, respectively, compared to controls), and in ventilated-inoculated animals (+95% and +118%, respectively, compared to controls). Mean alveolar and mean bronchiolar areas significantly correlated with the extension of lung infection (R = 0.50, p < 0.01 and R = 0.67, p < 0.001, respectively). Lung infection induces bronchiolar and alveolar distention. Mechanical ventilation induces secondary lung infection and is associated with further air-space enlargement. The combination of primary lung infection and mechanical ventilation markedly increases air-space enlargement, the degree of which depends on the severity and extension of lung infection.
    Critical care (London, England) 01/2007; 11(1):R14. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients who experience severe trauma are at increased risk for the development of acute lung injury and acute respiratory distress syndrome. The management strategies used to treat respiratory failure in this patient population should be comprehensive. Current trends in the management of acute lung injury and acute respiratory distress syndrome consist of maintaining acceptable gas exchange while limiting ventilator-associated lung injury. Currently, two distinct forms of ventilator-associated lung injury are recognized to produce alveolar stress failure and have been termed low-volume lung injury (intratidal alveolar recruitment and derecruitment) and high-volume lung injury (alveolar stretch and overdistension). Pathologically, alveolar stress failure from low- and high-volume ventilation can produce lung injury in animal models and is termed ventilator-induced lung injury. The management goal in acute lung injury and acute respiratory distress syndrome challenges clinicians to achieve the optimal balance that both limits the forms of alveolar stress failure and maintains effective gas exchange. The integration of new ventilator modes that include the augmentation of spontaneous breathing during mechanical ventilation may be beneficial and may improve the ability to attain these goals. Airway pressure release ventilation is a mode of mechanical ventilation that maintains lung volume to limit intra tidal recruitment /derecruitment and improves gas exchange while limiting over distension. Clinical and experimental data demonstrate improvements in arterial oxygenation, ventilation-perfusion matching (less shunt and dead space ventilation), cardiac output, oxygen delivery, and lower airway pressures during airway pressure release ventilation. Mechanical ventilation with airway pressure release ventilation permits spontaneous breathing throughout the entire respiratory cycle, improves patient comfort, reduces the use of sedation, and may reduce ventilator days.
    Current Opinion in Critical Care 01/2005; 10(6):549-57. · 2.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High oxygen concentrations (hyperoxia), often required in the treatment of preterm infants and critically ill patients, cause lung injury, targeting especially the endothelium. Exposure of primary human lung microvascular endothelial cells (HLMVEC) to hyperoxia caused transient Akt activation after 60 min, as determined by Western blot analysis of phosphorylated Ser 473 of Akt. Akt phosphorylation was also increased after 24 h of hyperoxic exposure, which declined at 48 h. Adenoviral (Ad)-mediated expression of constitutively active myrAkt protected HLMVEC against hyperoxic injury. Cell death due to hyperoxia (95% O2, 8 days), which was primarily necrotic, was substantial in control and Ad-LacZ-transduced cells, but was diminished by almost half in myrAkt-transduced cells. Hyperoxia caused increased cellular glucose consumption, an effect that was amplified in cells transduced with myrAkt compared to the LacZ-transduced or the nontransduced controls. Increased glucose consumption in myrAkt-expressing cells was accompanied by increased phosphorylation of mTOR and p70 S6-kinase. Rapamycin treatment decreased glucose consumption in myrAkt-transduced cells to levels comparable to those in control and LacZ-transduced cells exposed to hyperoxia. Ultrastructural morphometric analyses demonstrated that mitochondria and endoplasmic reticulum were less swollen in myrAkt cells relative to controls exposed to hyperoxia. These studies demonstrate that early activation of Akt occurs in hyperoxia in HLMVEC. That this event is a beneficial response is suggested by the finding that constitutive activation of Akt protects against hyperoxic stress, at least in part, by maintaining mitochondrial integrity.
    Free Radical Biology and Medicine 05/2006; 40(7):1108-18. · 5.27 Impact Factor