Article

The role of lipoic acid residues in the pyruvate dehydrogenase multienzyme complex of Escherichia coli.

Biochemical Journal (Impact Factor: 4.65). 01/1982; 199(3):505-11.
Source: PubMed

ABSTRACT Two lipoic acid residues on each dihydrolipoamide acetyltransferase (E2) chain of the pyruvate dehydrogenase multienzyme complex of Escherichia coli were found to undergo oxidoreduction reactions with NAD+ catalysed by the lipoamide dehydrogenase component. It was observed that: (a) 2 mol of reagent/mol of E2 chain was incorporated when the complex was incubated with N-ethylmaleimide in the presence of acetyl-SCoA and NADH; (b) 4 mol of reagent/mol of E2 chain was incorporated when the complex was incubated with N-ethylmaleimide in the presence of NADH; (c) between 1 and 2 mol of acetyl groups/mol of E2 chain was incorporated when the complex was incubated with acetyl-SCoA plus NADH; (d) 2 mol of acetyl groups/mol of E2 chain was incorporated when the complex was incubated with pyruvate either before or after many catalytic turnovers through the overall reaction. There was no evidence to support the view that only half of the dihydrolipoic acid residues can be reoxidized by NAD+. However, chemical modification of lipoic acid residues with N-ethylmaleimide was shown to proceed faster than the accompanying loss of enzymic activity under all conditions tested, which indicates that not all the lipoyl groups are essential for activity. The most likely explanation for this result is an enzymic mechanism in which one lipoic acid residue can take over the function of another.

0 Bookmarks
 · 
39 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nucleotide sequence of the sucB gene, which encodes the dihydrolipoamide succinyltransferase component (E2o) of the 2-oxoglutarate dehydrogenase complex of Escherichia coli K12, has been determined by the dideoxy chain-termination method. The results extend by 1440 base pairs the previously reported sequence of 3180 base pairs, containing the sucA gene. The sucB structural gene comprises 1209 base pairs (403 codons excluding the initiating AUG), and it is preceded by a 14-base-pair intercistronic region containing a good ribosomal binding site. The absence of a typical terminator sequence and the presence of an IS-like sequence downstream of sucB suggest that there may be further gene(s) in the suc operon. The IS-like sequence is homologous with other intercistronic sequences including that between the sdhB and sucA genes, the overall gene organisation being: sdhB-IS-sucAsucB-IS-. The patterns of codon usage indicate that sucB may be more strongly expressed than sucA, consistent with the disproportionate contents of their products in the oxoglutarate dehydrogenase complex. The predicted amino acid composition and Mr (43 607) of the succinyltransferase component agree with previous studies on the purified protein. Comparison with the corresponding acetyltransferase component of the pyruvate dehydrogenase complex (E2p, aceF gene product) indicates that each contains two analogous domains, an amino-terminal lipoyl domain linked to a carboxy-terminal catalytic and subunit binding domain. The lipoyl domain of the acetyltransferase (E2p) comprises three tandemly repeated approximately 100-residue lipoyl binding regions containing two short (approximately 19 residues) internal repeats, whereas the lipoyl domain of the succinyltransferase (E2o) contains just one approximately 100-residue lipoyl binding region, with approximately 27% homology to each of the three comparable regions in E2p, and no detectable internal repeats. The catalytic and subunit binding domains, each approximately 300 residues, have an overall homology of 34% and, consistent with their combination of analogous and specific functions, some regions are more homologous than others. Both sequences feature segments rich in proline and alanine. In E2p these occur at the carboxy-terminal ends of each of the three lipoyl binding regions, there being a particularly extended sequence at the end of the third repeat, whereas in E2o the main proline-alanine segment is found approximately 50 residues into the subunit binding domain.(ABSTRACT TRUNCATED AT 400 WORDS)
    European Journal of Biochemistry 07/1984; 141(2):361-74. · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pattern formation and morphogenesis depend on the careful execution of complex genetic programs, which are conserved in multicellular organisms. An important signal in some of these programs in Drosophila and vertebrates is the secreted Hedgehog (Hh) protein, which primarily functions as an inducer of morphogenetic signals. The Hh signal plays a decisive role in such critical developmental processes as neurulation and somite and limb formation. The Hh signalling pathway exhibits a novel mechanism of signal reception and transduction. In the absence of the Hh signal, the membrane protein Patched (Ptc) represses the constitutive signalling activity of a second membrane protein, Smoothened (Smo), by virtue of its ability to form a Ptc-Smo complex. Hence, mutations within the ptc gene that result in the failure of Ptc to inhibit Smo lead to constitutive activity of the Hh signalling pathway and to cancer, such as basal cell carcinoma. For activation of Hh-target genes, the N-terminal signalling domain of Hh binds to the Ptc-Smo receptor complex to activate two parallel signalling pathways. Furthermore, Hh limits its own range of action by impeding its diffusion through (i) covalent linkage of its N-terminal signalling moiety to cholesterol, mediated by the cholesterol transferase activity of its C-terminal moiety, and (ii) induction of, and sequestration by, its antagonist, Ptc.
    Biological Chemistry 08/1997; 378(7):583-90. · 2.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The recently characterized Mr-50000 polypeptide associated with mammalian pyruvate dehydrogenase complex, referred to as component or protein X, was shown to incorporate N-ethylmaleimide only in the presence of pyruvate or NADH. Component X, modified with N-ethyl[2,3-14C]maleimide in the presence of pyruvate, was isolated and subjected to acid hydrolysis. The radioactive products were resolved on an amino acid analyser and these coeluted with products from similarly modified and hydrolysed lipoate acetyltransferase. Preincubation of pyruvate dehydrogenase complex with pyruvate or NADH and acetyl-CoA resulted in a time-dependent diminution of incorporation of radiolabelled N-ethylmaleimide into component X and lipoate acetyltransferase and, correspondingly, in the extent of inhibition of overall complex activity by N-ethylmaleimide.
    European Journal of Biochemistry 09/1986; 158(3):595-600. · 3.58 Impact Factor

Full-text (2 Sources)

View
6 Downloads
Available from
May 28, 2014