Article

Biochemical studies of rat lung following exposure to potassium dichromate or chromium-rich welding fume particles.

Toxicology Letters (Impact Factor: 3.15). 05/1982; 11(1-2):159-63. DOI: 10.1016/0378-4274(82)90122-9
Source: PubMed

ABSTRACT Rats were examined for biochemical changes at the lung surface and in lung tissue 1, 4, and 13 weeks after a single instillation of the soluble of insoluble fraction of stainless steel welding particles, or potassium dichromate containing concentrations of hexavalent chromium (CrVI) equivalent to those found in the welding particles. Most of the toxicity of the welding particles 1 week after instillation could be related to the content of soluble CrVI, though the insoluble particles also produced changes at the alveolar surface. The regression of inflammatory changes 4 and 13 weeks after instillation was probably due to the removal of soluble components such as CrVI from the lung.

1 Bookmark
 · 
94 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary infections have been reported to be increased in welders. Previous animal studies have indicated that manual metal arc, stainless steel welding fume (MMA-SS) increased susceptibility to lung infections. MMA-SS is composed of a complex of metals (e.g., iron, chromium, nickel). The objective was to determine which metal component of MMA-SS welding fume alters lung defense responses. At Day 0, rats were intratracheally instilled one time with saline or MMA-SS at a concentration of 2 mg/rat. Additional rats were treated with the metal constituents, Fe(2)O(3), NiO, or Cr(2)Na(2)O(7) alone or in combination, at concentrations that are present in the dose used for MMA-SS treatment. At Day 3, rats were intratracheally inoculated with 5 x 10(3) Listeria monocytogenes. At Days 6, 8 and 10, homogenized left lungs were cultured, and colony-forming units were counted after an overnight incubation to assess pulmonary bacterial clearance. At Day 3 (prior to infection) and at Days 6, 8 and 10, right lungs were lavaged to recover cells and fluid from the airspaces to measure lung injury, inflammation, and cytokine secretion. The production of reactive oxygen species by phagocytes recovered from the lungs was measured. Exposure to MMA-SS, soluble Cr, or the mixture of all three metals before infection significantly increased bacterial lung burden and tissue damage when compared to control. Animals treated with NiO or Fe(2)O(3) did not differ from control. Animals pre-treated with soluble Cr had alterations in inflammation and in the production of different cytokines (TNFalpha, IL-6, IL-2, and IL-12) involved in lung immune responses. This study indicates that soluble Cr present in MMA-SS is likely the primary component responsible for the suppression of lung defense responses associated with stainless steel welding fumes.
    Journal of Immunotoxicology 05/2007; 4(2):117-27. · 1.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Welders are exposed to fumes with different metal profiles. The goals of this study were to compare lung responses in rats after treatment with chemically different welding fumes and to examine the extrapulmonary fate of metals after deposition in the lungs. Rats were treated by intratracheal instillation (0.5 mg/rat, once a week for 7 weeks) with gas metal arc-mild steel (GMAW-MS) or manual metal arc-hardsurfacing (MMAW-HS) welding fumes. Controls were treated with saline. At 1, 4, 35, and 105 days after the last treatment, lung injury and inflammation were measured, and elemental analysis of different organs was determined to assess metal clearance. The MMAW-HS fume was highly water-soluble and chemically more complex with higher levels of soluble Mn and Cr compared to the GMAW-MS fume. Treatments with the GMAW-MS fume had no effect on toxicity when compared with controls. The MMAW-HS fume induced significant lung damage early after treatment that remained elevated until 35 days. Metals associated with each fume sample was cleared at different rates from the lungs. Mn was cleared from the lungs at a faster rate and to a greater extent compared to the other metals over the 105-day recovery period. Mn and Cr in the MMAW-HS fume translocated from the respiratory tract and deposited in other organs. Importantly, increased deposition of Mn, but not other metals, was observed in discrete brain regions, including dopamine-rich areas (e.g., striatum and midbrain).
    Inhalation Toxicology 08/2010; 22(10):805-16. · 1.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Approximately one million workers worldwide perform welding as part of their work duties. Electric arc welding processes produce metal fumes and gases which may be harmful to exposed workers.Methods This review summarizes human and animals studies which have examined the effect of welding fume exposure on respiratory health. An extensive search of the scientific and occupational health literature was performed, acquiring published articles which examined the effects of welding on all aspects of worker and laboratory animal health. The databases accessed included PubMed, Ovid, NIOSHTIC, and TOXNET.ResultsPulmonary effects observed in full-time welders have included metal fume fever, airway irritation, lung function changes, susceptibility to pulmonary infection, and a possible increase in the incidence of lung cancer. Although limited in most cases, animal studies have tended to support the findings from epidemiologic studies.Conclusions Despite the numerous studies on welding fumes, incomplete information still exists regarding the causality and possible underlying mechanisms associated with welding fume inhalation and pulmonary disease. The use of animal models and the ability to control the welding fume exposure in toxicology studies could be utilized in an attempt to develop a better understanding of how welding fumes affect pulmonary health. Am. J. Ind. Med. 43:350–360, 2003. Published 2003 Wiley-Liss, Inc.
    American Journal of Industrial Medicine 03/2003; 43(4):350 - 360. · 1.97 Impact Factor