Mechanism of elevation of serum alkaline phosphatase activity in biliary obstruction: an experimental study.

First Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 3-1, Hongo 6-chome, Bunkyoku, Tokyo 113, Japan; Received 27 November 1979. Available online 22 January 2003.
Clinica Chimica Acta (Impact Factor: 2.85). 11/1980; 107(1-2):85-96. DOI: 10.1016/0009-8981(80)90417-9
Source: PubMed

ABSTRACT Bile duct ligation in rats increased alkaline phosphatase activity in serum and liver. In the serum, the activity reached a peak 24 h after bile duct ligation, earlier than in the liver. This finding indicates that the elevation of serum alkaline phosphatase activity is not due to simple overspill of this enzyme from the liver into the circulation. An electrophoretic study, employing polyacrylamide gel with Triton X-100, and a gel filtration study disclosed that 24 h after bile duct ligation the serum contained a high molecular weight form of alkaline phosphatase in addition to the hepatic and intestinal isoenzymes. The high molecular weight form was also found in bile, indicating that regurgitation of bile contributed to the increase in alkaline phosphatase activity in the serum. The absence of the high molecular weight alkaline phosphatase in the sera of rats with intrahepatic cholestasis induced by alpha-naphthylisothiocyanate suggests that, in this type of cholestasis, regurgitation of bile alkaline phosphatase does not play an important role in the elevation of serum alkaline phosphatase activity. These findings indicate that the high molecular weight alkaline phosphatase in serum is a useful diagnostic marker of biliary obstruction.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Alkaline phosphatase (ALP) exists as several isoenzymes and many isoforms present in tissues and serum. The objective of this study was to separate tissue ALP forms in rats and humans and characterise their properties. The materials for the investigation were intestinal, bone, and liver tissue of rats and commercially available human preparations of tissue ALP. Two methods of separation were used: high-performance liquid chromatography (HPLC) and agarose gel electrophoresis. Using HPLC in the rat tissues, two ALP isoforms in the intestine, one in the bone, and three in the liver were identified. In humans three intestinal, two bone, and one liver isoform were resolved. Electrophoresis showed two ALP activity bands in rat intestine, one wide band in the bone, and three bands in the liver. ALP of human tissues was visualised as a single wide band, with a different mobility observed for each organ. In both species the presence of a form with properties characteristic of the bone isoform of the tissue-nonspecific isoenzyme was observed in the intestine. HPLC offers a higher resolution than electrophoresis with respect to tissue ALP fractions in rats and in humans, but electrophoresis visualises high-molecular-mass insoluble enzyme forms.
    Biochimie 01/2009; 91(3):445-52. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The redistribution and fate of colchicine-induced alkaline phosphatase (ALPase) in rat hepatocytes were investigated by electron microscopic enzyme cytochemistry and biochemistry. ALPase activity markedly increased in rat hepatocytes after colchicine treatment (2.0 mg/kg body weight, intraperitoneal injection). At 20-24 h after colchicine treatment, the liver showed the highest activity of ALPase. Thereafter, ALPase activity decreased and returned to normal levels at 48 h. In normal hepatocytes from control rats, ALPase activity was seen only on the bile canalicular membrane. However, at 20-24 h after colchicine treatment, colchicine-induced ALPase was redistributed in the sinusoidal and lateral (basolateral) membranes as well as in the bile canalicular membrane. At 30-36 h after colchicine treatment, ALPase activity on the basolateral membrane gradually decreased. In contrast, ALPase in the bile canalicular membrane increased along with the enlargement of bile canaliculi, suggesting that ALPase in the basolateral membrane had been transported to the bile canalicular membrane. Furthermore, ALPase-positive vesicles, cisternae and autophagosome-like structures were frequently seen in the cytoplasm. ALPase was also positive in some lysosomal membranes. ALPase in hepatocytes at 48 h after colchicine treatment returned to almost the same location as in control hepatocytes. Altogether, it is suggested that excessively induced ALPase is at least partially retrieved by invagination of the bile canalicular membrane and then transported to lysosomes for degradation. In addition, this study indicates that excess plasma membrane might be a possible origin of autophagosomal membrane.
    Histochemie 11/1995; 104(4):257-65. · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Testing the blood for evidence of hepatic damage and dysfunction frequently involves measuring several blood constituents simultaneously to screen for disease. While useful, this approach occasionally leads to apparent disparities between the blood test results, and the results of other diagnostic tests such as histology. In part, these perceived discrepancies may stem from a lack of appreciation for tissue, cellular, and molecular factors that affect the appearance of hepatic disease biomarkers in the blood. Further confusing the matter is that in some instances the mechanisms responsible for the appearance of diagnostic compounds in blood are only partially understood. Many of the known factors that affect hepatic biomarkers are similar to those affecting other tissue markers, while others are unique to the liver, such as those involved with cholestasis. Disease conditions can also cause misleading results by affecting tissue concentrations of test compounds, hepatic mass, and the clearance rate of compounds from the blood. Knowledge of the factors affecting the blood concentrations of biomarkers, as well as investigations into the mechanisms behind changes to hepatic biomarker concentrations, may allow for a better interpretation of blood test results and fewer inconsistencies between diagnostic results.
    Toxicologic Pathology 02/2005; 33(1):9-16. · 2.06 Impact Factor