Article

Fibroblast growth factor receptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with acanthosis nigricans.

Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland 21287-3914, USA.
Nature Genetics (Impact Factor: 29.65). 01/1996; 11(4):462-4. DOI: 10.1038/ng1295-462
Source: PubMed

ABSTRACT Crouzon syndrome, an autosomal dominant condition characterized by craniosynostosis, ocular proptosis and midface hypoplasia, is associated with mutations in fibroblast growth factor receptor 2 (FGFR2) (refs 1-3). For example, we have identified 10 different mutations in the FGFR2 extracellular immunoglobulin III (IgIII) domain in 50% (16/32) of our Crouzon syndrome patients. All mutations described so far for other craniosynostotic syndromes with associated limb anomalies--Jackson-Weiss, Pfeiffer, and Apert--also occur in the extracellular domain of FGFR2, as well as FGFR1 for Pfeiffer syndrome. In contrast, only FGFR3 mutations have been reported in dwarfing conditions--achondroplasia, thanatophoric dysplasia, and hypochondroplasia. For achondroplasia, greater than 99% of mutations occur in the FGFR3 transmembrane domain. We now report the unexpected observation of a FGFR3 transmembrane domain mutation, Ala391Glu, in three unrelated families with Crouzon syndrome and acanthosis nigricans, a specific skin disorder of hyperkeratosis and hyperpigmentation. The association of non-dwarfing and even non-skeletal conditions with FGFR3 mutations reveals the potential for a wide range of FGFR pleiotropic effects as well as locus heterogeneity in Crouzon syndrome. Our study underscores the biologic complexity of the FGFR gene family.

0 Followers
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The functional significance of fibroblast growth factor (FGF) signaling in bone formation has been demonstrated through genetic loss-of-function and gain-of-function approaches. FGFs, comprising 22 family members, are classified into three subfamilies: canonical, hormone-like, and intracellular. The former two subfamilies activate their signaling pathways through FGF receptors (FGFRs). Currently, intracellular FGFs appear to be primarily involved in the nervous system. Canonical FGFs such as FGF2 play significant roles in bone formation, and precise spatiotemporal control of FGFs and FGFRs at the transcriptional and posttranscriptional levels may allow for the functional diversity of FGFs during bone formation. Recently, several research groups, including ours, have shown that FGF23, a member of the hormone-like FGF subfamily, is primarily expressed in osteocytes/osteoblasts. This polypeptide decreases serum phosphate levels by inhibiting renal phosphate reabsorption and vitamin D3 activation, resulting in mineralization defects in the bone. Thus, FGFs are involved in the positive and negative regulation of bone formation. In this review, we focus on the reciprocal roles of FGFs in bone formation in relation to their local versus systemic effects.
    International Journal of Endocrinology 01/2015; 2015:729352. DOI:10.1155/2015/729352 · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2015 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.
    03/2015; DOI:10.1002/wdev.176
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The four receptor tyrosine kinases (RTKs) within the family of Fibroblast Growth Factor Receptors (FGFRs) are critical for normal development but also play an enormous role in oncogenesis. Mutations and/or abnormal expression often lead to constitutive dimerization and kinase activation of FGFRs, and represent the primary mechanism for aberrant signaling. Sequencing of human tumors has revealed a plethora of somatic mutations in FGFRs that are frequently identical to germline mutations in developmental syndromes, and has also identified novel FGFR fusion proteins arising from chromosomal rearrangements that contribute to malignancy. This review details approximately 200 specific point mutations in FGFRs and 40 different fusion proteins created by translocations involving FGFRs that have been identified in human cancer. This review discusses the effects of these genetic alterations on downstream signaling cascades, and the challenge of drug resistance in cancer treatment with antagonists of FGFRs.
    Cytokine & Growth Factor Reviews 04/2015; 16. DOI:10.1016/j.cytogfr.2015.03.003 · 6.54 Impact Factor