Signal transduction by the alpha 6 beta 4 integrin: distinct beta 4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes.

Department of Pathology, Kaplan Comprehensive Cancer Center, New York University School of Medicine, NY 10016, USA.
The EMBO Journal (Impact Factor: 10.75). 10/1995; 14(18):4470-81. DOI: 10.1093/emboj/19.20.5585
Source: PubMed

ABSTRACT We have examined the mechanism of signal transduction by the hemidesmosomal integrin alpha 6 beta 4, a laminin receptor involved in morphogenesis and tumor progression. Immunoprecipitation and immune complex kinase assays indicated that antibody- or laminin-induced ligation of alpha 6 beta 4 causes tyrosine phosphorylation of the beta 4 subunit in intact cells and that this event is mediated by a protein kinase(s) physically associated with the integrin. Co-immunoprecipitation and GST fusion protein binding experiments showed that the adaptor protein Shc forms a complex with the tyrosine-phosphorylated beta 4 subunit. Shc is then phosphorylated on tyrosine residues and recruits the adaptor Grb2, thereby potentially linking alpha 6 beta 4 to the ras pathway. The beta 4 subunit was found to be phosphorylated at multiple tyrosine residues in vivo, including a tyrosine-based activation motif (TAM) resembling those found in T and B cell receptors. Phenylalanine substitutions at the beta 4 TAM disrupted association of alpha 6 beta 4 with hemidesmosomes, but did not interfere with tyrosine phosphorylation of Shc and recruitment of Grb2. These results indicate that signal transduction by the alpha 6 beta 4 integrin is mediated by an associated tyrosine kinase and that phosphorylation of distinct sites in the beta 4 tail mediates assembly of the hemidesmosomal cytoskeleton and recruitment of Shc/Grb2.

Download full-text


Available from: Kishore K Wary, Jan 12, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine phosphorylation plays a critical role in growth regulation, and its aberrant regulation can be involved in carcinogenesis. The association of Shc (Src homolog and collagen homolog) adaptor protein family members in tyrosine phosphorylation signaling pathway is well recognized. Shc adaptor proteins transmit activated tyrosine phosphorylation signaling that suggest their plausible role in growth regulation including carcinogenesis and metastasis. In parallel, by sharing a similar mechanism of carcinogenesis, the steroids are involved in the early stage of carcinogenesis as well as the regulation of cancer progression and metastatic processes. Recent evidence indicates a cross-talk between tyrosine phosphorylation signaling and steroid hormone action in epithelial cells, including prostate and breast cancer cells. Therefore, the members of Shc proteins may function as mediators between tyrosine phosphorylation and steroid signaling in steroid-regulated cell proliferation and carcinogenesis. In this communication, we discuss the novel roles of Shc proteins, specifically p52(Shc) and p66(Shc), in steroid hormone-regulated cancers and a novel molecular mechanism by which redox signaling induced by p66(Shc) mediates steroid action via a non-genomic pathway. The p66(Shc) protein may serve as an effective biomarker for predicting cancer prognosis as well as a useful target for treatment.
    Endocrine Related Cancer 12/2008; 16(1):1-16. DOI:10.1677/ERC-08-0179 · 4.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of the mammary gland is spatially regulated by the interaction of the mammary epithelium with the extracellular matrix (ECM). Cells receive cues from the ECM through a family of adhesion receptors called integrins, consisting of alpha- and beta-chain dimers. Integrins assist cells in sensing their appropriate developmental context in response to both hormones and growth factors. Here we argue that cell adhesion to the ECM plays a key role in specific developmental checkpoints, particularly in alveolar survival, morphogenesis and function. Specific ablation of alphabeta1-integrins in the luminal epithelium of the mammary gland shows that this sub-type of receptors is required for proliferation, accurate morphological organisation, as well as milk secretion. Downstream, small Rho GTPases mediate cellular polarisation and differentiation. Current challenges in studying the integration of signals in checkpoints of mammary gland development are discussed.
    The International Journal of Biochemistry & Cell Biology 02/2007; 39(4):715-26. DOI:10.1016/j.biocel.2006.11.004 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of biomarkers has facilitated the detection of specific tumor cells. However, the technology to apply these markers in a clinical setting has not kept pace with their increasing availability. In this project, we use an antibody-based microfluidics platform to recognize and capture cervical cancer cells. Because HPV-16 infection of cervical cells and up-regulation of alpha6-integrin cell surface receptors are correlated, we utilized alpha6-integrin as a capture antibody bound to the channel surface. Normal human glandular epithelial cells (HGEC), human cervical stromal cells (HCSC) and cervical cancer cells (HCCC) were suspended in PBS and flowed through the system. Greater than 30% of the cancer cells were captured while the capture of the normal cell types was less than 5%. The technique is sensitive and accurate. It is potentially useful in the detection of cervical cancer at all stages, as well as other of cancers with similar characteristics of cell surface antigen expression.
    Biosensors & Bioelectronics 05/2006; 21(10):1991-5. DOI:10.1016/j.bios.2005.09.005 · 6.45 Impact Factor