Identification of phenobarbital N-glucuronides as urinary metabolites of phenobarbital in mice.

Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond 23298-0540, USA.
Drug Metabolism and Disposition (Impact Factor: 3.36). 06/1995; 23(5):548-52.
Source: PubMed

ABSTRACT Mice were evaluated for their ability to form phenobarbital N-glucuronides. Following oral administration of [14C]phenobarbital to mice, a radiolabeled phenobarbital metabolite cochromatographed with synthetic standards of phenobarbital N-glucuronides. The phenobarbital N-glucuronides were partially purified from the mouse urine as phenobarbital N-methylglucuronates. The phenobarbital N-methylglucuronates isolated from mouse urine had similar chromatographic and spectroscopic properties as synthetic standards. The diastereomers of phenobarbital N-glucuronides and phenobarbital N-glucosides accounted for 7.8 +/- 2.3% and 1.6 +/- 0.6%, respectively, of the radioactivity excreted in mouse urine in the first 48 hr after dosing. This study indicates that the mouse may be a suitable species to study both N-glucosidation and N-glucuronidation simultaneously as metabolic pathways for barbiturates.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Resistance of helminth parasites to common anthelminthics is a problem of increasing importance. The full mechanism of resistance development is still not thoroughly elucidated. There is also limited information about helminth enzymes involved in metabolism of anthelminthics. Identification of the metabolites formed by parasitic helminths can serve to specify which enzymes take part in biotransformation of anthelminthics and may participate in resistance development. The aim of our work was to identify the metabolic pathways of the anthelminthic drugs albendazole (ABZ) and flubendazole (FLU) in Haemonchus contortus, a world-wide distributed helminth parasite of ruminants. ABZ and FLU are benzimidazole anthelminthics commonly used in parasitoses treatment. In our ex vivo study one hundred living adults of H. contortus, obtained from the abomasum of an experimentally infected lamb, were incubated in 5mL RPMI-1640 medium with 10μmol L−1 benzimidazole drug (10% CO2, 38 °C) for 24h. The parasite bodies were then removed from the medium. After homogenization of the parasites, both parasite homogenates and medium from the incubation were separately extracted using solid-phase extraction. The extracts were analyzed by liquid chromatography–mass spectrometry (LC–MS) with electrospray ionization (ESI) in positive-ion mode. The acquired data showed that H. contortus can metabolize ABZ via sulfoxidation and FLU via reduction of a carbonyl group. Albendazole sulfoxide (ABZSO) and reduced flubendazole (FLUR) were the only phase I metabolites detected. Concerning phase II of biotransformation, the formation of glucose conjugates of ABZ, FLU, and FLUR was observed. All metabolites mentioned were found in both parasite homogenates and medium from the incubation.
    Analytical and Bioanalytical Chemistry 01/2008; 391(1):337-343. · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucosylation of xenobiotics in mammals has been observed for a limited number of drugs. Generally, these glucoside conjugates are detected as urinary excretion products with limited information on their formation. An in vitro assay is described for measuring the formation of the phenobarbital N-glucoside diasteriomers ((5R)-PBG, (5S)-PBG) using human liver microsomes. Human livers (n = 18) were screened for their ability to N-glucosylate PB. Cell viability, period of liver storage, prior drug exposure, serum bilirubin levels, age, sex and ethnicity did not appear to influence the specific activities associated with the formation of the PB N-glucosides. The average rate of formation for both PB N-glucoside was 1.42 +/- 1.04 (range 0.11-4.64) picomole/min/mg-protein with an (5S)-PBG/(5R)-PBG ratio of 6.75 +/- 1.34. The apparent kinetic constants, Km and Vmax, for PB N-glucosylation for eight of the livers ranged from 0.61-20.8 mM and 2.41-6.29 picomole/min/mg-protein, respectively. The apparent Vmax/Km ratio for PB exhibited a greater than 20 fold variation in the ability of the microsomes to form the PB N-glucosides. It would appear that the formation of these barbiturate N-glucoside conjugates in vitro are consistent with the amount of barbiturate N-glucosides formed and excreted in the urine in prior drug disposition studies.
    European Journal of Drug Metabolism and Pharmacokinetics 03/2004; 29(1):51-9. · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An overview of the electrokinetic chromatographic methods for the analysis of antiepileptic drug levels in biological samples is presented. In particular, micellar electrokinetic capillary chromatography is a very suitable method for the determination of these drugs, because it allows a rapid, selective, and accurate analysis. In addition to the electrokinetic chromatographic studies on the determination of antiepileptic drugs, some information regarding sample pretreatment will also be reported: this is a critical step when the analysis of biological fluids is concerned. The electrokinetic chromatographic methods for the determination of recent antiepileptic drugs (e.g., lamotrigine, levetiracetam) and classical anticonvulsants (e.g., carbamazepine, phenytoin, ethosuximide, valproic acid) will be discussed in depth, and their pharmacological profiles will be briefly described as well.
    Electrophoresis 03/2005; 26(4-5):767-82. · 3.26 Impact Factor