Effects of early cysteamine therapy on thyroid function and growth in nephropathic cystinosis.

Department of Pediatrics, Virginia Commonwealth University, Ричмонд, Virginia, United States
Journal of Clinical Endocrinology &amp Metabolism (Impact Factor: 6.31). 12/1995; 80(11):3257-61. DOI: 10.1210/jc.80.11.3257
Source: PubMed

ABSTRACT Primary hypothyroidism is a known complication of nephropathic cystinosis, a lysosomal storage disorder characterized by renal failure as well as deterioration of other organs. The drug cysteamine depletes lysosomes of cystine and helps preserve renal function and enhance growth in cystinosis patients. To determine whether cysteamine also prevents hypothyroidism, we retrospectively divided 101 patients into group A (n = 28; well treated), group B (n = 26; partially treated), and group C (n = 47; poorly treated). Lifetable analysis indicated a significantly higher probability of remaining free of L-T4 replacement in group A vs. group B (P = 0.09) or group C (P = 0.004). Cysteamine therapy also improved mean height z-scores (-2.17 in group A, -3.04 in group B, and -4.07 in group C) and reduced the bone age deficit (i.e. chronological age minus bone age) by 1.5 yr for every 10 yr of previous cysteamine therapy. We conclude that in addition to its other salutary effects, oral cysteamine therapy helps prevent hypothyroidism and enhances growth in patients with nephropathic cystinosis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Nephropathic cystinosis is a rare autosomal recessive disorder caused by mutations in the CTNS gene, encoding for cystinosin, a carrier protein transporting cystine out of lysosomes. Its deficiency leads to cystine accumulation and cell damage in multiple organs, especially in the kidney. In this study, we aimed to provide the first report describing the mutational spectrum of Egyptian patients with nephropathic cystinosis and their genotype-phenotype correlation. Methods: Fifteen Egyptian patients from 13 unrelated families with infantile nephropathic cystinosis were evaluated clinically, biochemically, and genetically. Screening for the common 57-kb deletion was performed by standard multiplex PCR, followed by direct sequencing of the ten coding exons, exon-intron interfaces, and promoter region. Results: None of the 15 Egyptian patients had the 57-kb deletion. Twenty-seven mutant alleles and 12 pathogenic mutations were detected including six novel mutations: two frameshift (c.260_261delTT; p.F87SfsX36, c.1032delCinsTG; p.F345CfsX19), one nonsense (c.734G>A; p.W245fsX), two missense (c.1084G>A; pG362R, c.560A>G; p.K187R), and one intronic splicing mutation (IVS3+5g>t). A novel promoter region mutation (1-593-41C>T) seemed to be detected but was excluded as a pathogenic mutation by quantitative real-time PCR analysis. Conclusions: This study could be the basis for future genetic counseling and prenatal diagnosis of patients with nephropathic cystinosis in Egyptian and surrounding populations. The screening for the 57-kb deletion is not recommended anymore outside its geographical distribution, especially in the region of the Middle East. A common Middle Eastern mutation (c.681G>A; E227E) was pointed out and discussed.
    01/2014; 14:87-97. DOI:10.1007/8904_2013_288
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Cystinosis is an autosomal recessive disease caused by intralysosomal cystine accumulation, treated with cysteamine. Recently, new adverse effects of cysteamine were reported. Skin biopsies showed microvascular proliferation (angioendotheliomatosis). To examine the mechanism of angioendotheliomatosis associated with cysteamine toxicity, we examined the effect of cysteamine on human dermal microvascular endothelial cells (HDMVEC). METHODS: After cysteamine exposure (range 0-3.0 mM) during 24 h, cell viability was measured using water soluble tetrazolium salt-1 (WST-1) in both control HDMVEC and fibroblasts. Cell proliferation and apoptosis rate were measured in HDMVEC by bromodeoxyuridine (BrdU) incorporation and caspase 3 and caspase 7 activity, respectively. Intracellular glutathione (GSH) was measured in HDMVEC after cysteamine exposure of 0, 0.1 or 1.0 mM. Medium and cysteamine were refreshed every 6 h to mimic the in vivo situation. Next, cell viability in HDMVEC was measured after 24 h of GSH exposure (range 0-10.0 mM). RESULTS: HDMVEC viability and proliferation increased after cysteamine exposure 0.03-3.0 mM (p < 0.01) and 0.03-1.0 mM (p = 0.01) respectively; cell viability in fibroblasts was not affected by incubation with cysteamine. Apoptosis remained unaffected by incubation with 0-1.0 mM cysteamine, 3.0 mM caused increased apoptosis. Intracellular GSH was significantly increased after incubation with cysteamine 0.1 mM (p = 0.02) and 1.0 mM (p < 0.01). HDMVEC viability increased after exposure to GSH 1.0-5.0 mM (p < 0.01). CONCLUSION: Cysteamine concentrations, similar to those described in plasma of cystinosis patients, stimulate HDMVEC viability and proliferation and increase intracellular GSH content. We postulate that this mechanism might underlie angioendotheliomatosis induced by cysteamine.
    Journal of Inherited Metabolic Disease 01/2013; 36(6). DOI:10.1007/s10545-013-9588-0 · 4.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although >55 CTNS mutations occur in patients with the lysosomal storage disorder cystinosis, no regulatory mutations have been reported, because the promoter has not been defined. Using CAT reporter constructs of sequences 5' to the CTNS coding sequence, we identified the CTNS promoter as the region encompassing nucleotides -316 to +1 with respect to the transcription start site. This region contains an Sp-1 regulatory element (GGCGGCG) at positions -299 to -293, which binds authentic Sp-1, as shown by electrophoretic-mobility-shift assays. Three patients exhibited mutations in the CTNS promoter. One patient with nephropathic cystinosis carried a -295 G-->C substitution disrupting the Sp-1 motif, whereas two patients with ocular cystinosis displayed a -303 G-->T substitution in one case and a -303 T insertion in the other case. Each mutation drastically reduced CAT activity when inserted into a reporter construct. Moreover, each failed either to cause a mobility shift when exposed to nuclear extract or to compete with the normal oligonucleotide's mobility shift. The CTNS promoter region shares 41 nucleotides with the promoter region of an adjacent gene of unknown function, CARKL, whose start site is 501 bp from the CTNS start site. However, the patients' CTNS promoter mutations have no effect on CARKL promoter activity. These findings suggest that the CTNS promoter region should be examined in patients with cystinosis who have fewer than two coding-sequence mutations.
    The American Journal of Human Genetics 10/2001; 69(4):712-21. DOI:10.1086/323484 · 10.99 Impact Factor