Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappaB

Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
Nature (Impact Factor: 42.35). 08/1995; 376(6536):167-70. DOI: 10.1038/376167a0
Source: PubMed

ABSTRACT NF-kappa B, which consists of two polypeptides, p50 (M(r) 50K) and p65/RelA (M(r) 65K), is thought to be a key regulator of genes involved in responses to infection, inflammation and stress. Indeed, although developmentally normal, mice deficient in p50 display functional defects in immune responses. Here we describe the generation of mice deficient in the RelA subunit of NF-kappa B. Disruption of the relA locus leads to embryonic lethality at 15-16 days of gestation, concomitant with a massive degeneration of the liver by programmed cell death or apoptosis. Embryonic fibroblasts from RelA-deficient mice are defective in the tumour necrosis factor (TNF)-mediated induction of messenger RNAs for I kappa B alpha and granulocyte/macrophage colony stimulating factor (GM-CSF), although basal levels of these transcripts are unaltered. These results indicate that RelA controls inducible, but not basal, transcription in NF-kappa B-regulated pathways.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Strong inhibition of NF-κB signaling in the epidermis results in spontaneous skin inflammation in mice and men. Since there is evidence for linkage between polymorphisms within the NF-κB signaling pathway and human inflammatory skin phenotypes, we asked whether partial functional inhibition of NF-κB signaling in epidermal keratinocytes can modulate clinically relevant skin inflammation. We therefore mutated rela specifically in the epidermis of mice (RelAE-MUT mice). These mice show no inflammatory phenotype. Induction of contact allergy, but not croton oil- induced irritant dermatitis, resulted in stronger ear swelling and increased epidermal thickness in RelAE-MUT mice. Both contact allergen and croton oil treatment led to increase expression of calgranulins A and B (S100A8/ A9) in RelAE-MUT mice. Epidermal hyperproliferation in RelAE-MUT mice was non-cell autonomous since cultured primary epidermal keratinocytes from RelAE-MUT mice showed reduced proliferation compared to controls. These results demonstrate that epidermal RelA specifically regulates DTH-induced skin inflammation. In addition, we here describe an essential but non- specific function of RelA in the protection of epidermal keratinocytes from apoptosis. Our study identifies functions of NF-κB signaling in the epidermis and corroborates a specific role of epidermal keratinocytes in the regulation of skin inflammation
    Journal of Investigative Dermatology 04/2014; DOI:10.1038/jid.2014.193 · 6.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation is a major mechanism of acute brain injury and chronic neurodegeneration. This neuroinflammation is known to be substantially regulated by the transcription factor NF-κB, which is predominantly found in the form of heterodimer of p65 (RelA) and p50 subunit, with p50/p50 homodimers being also common. The p65 subunit has a transactivation domain, whereas p50 is chiefly involved in DNA binding. Binding of the p65/p50 heterodimers are thought to induce expression of numerous proinflammatory genes in microglia. Here we show that cultured microglia deficient for the gene (Nfkb1) encoding p50 subunit show reduced induction of proinflammatory mediators, increased expression of anti-inflammatory genes, and increased expression of CD45, an immunoregulatory molecule, in response to lipopolysaccharide (LPS) exposure, but increased capacity to take up β-amyloid (Aβ) which is associated with enhanced release of tumor necrosis factor alpha (TNFα). However, Nfkb1 deficiency strongly increases leukocyte infiltration and the expression of proinflammatory genes in response to intrahippocampal administration of LPS. Also, when crossing Nfkb1 deficient mice with APdE9 transgenic mice the expression of proinflammatory genes was strongly enhanced, whereas Aβ burden was slightly but significantly reduced. These alterations in expression of inflammatory mediators in Nfkb1 deficient mice were associated with reduced expression of CD45. Our data demonstrates a crucial and complex role p50 subunit of NF-κB in brain inflammation, especially in regulating the phenotype of microglia after acute and chronic inflammatory insults relevant to clinical conditions, contributing to both pro-inflammatory and anti-inflammatory responses of microglia, infiltration of leukocytes, and clearance of Aβ in Alzheimer's disease.
    Neurobiology of Disease 12/2013; 64. DOI:10.1016/j.nbd.2013.12.003 · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogens and glucocorticoids have synergistic effects in the micro and macrovasculature of endothelial cells (ECs), having pro-inflammatory effects in the former and inhibiting the expression of adhesion molecules in the latter. The molecular basis of these effects in the endothelium has not yet been clarified. We postulate that the ECs of the micro- and macrovasculature have different non-genomic mechanisms that regulate levels of preexisting complexes of glucocorticoids and estrogens with their respective receptors. Since these receptors are regulated by NF-κB, their expression could be critical to the activation of a pro- or anti-inflammatory response. In the macrovasculature the synergistic effects of estrogens and glucocorticoids on ECs may be through the inhibition of NF-κB, leading to the inhibition of the expression of inflammatory molecules. It seems likely that glucocorticoid-receptor and estrogen-receptor complexes directly bind to NF-κB proteins in the macrovasculature, resulting in the inhibition of an excessive proinflammatory response. Further insights into these processes may help clarify the role of the endothelial cells of different vascular beds during the inflammatory response and chronic inflammation, and thus contribute to the design of more effective therapeutic strategies for the prevention of diseases related to inflammation, including atherosclerosis, systemic lupus erythematosus and rheumatoid arthritis.
    Medical Hypotheses 10/2013; 81(6). DOI:10.1016/j.mehy.2013.10.007 · 1.15 Impact Factor