Article

Trans-synaptic modulation of striatal ACh release in vivo by the parafascicular thalamic nucleus.

Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
European Journal of Neuroscience (Impact Factor: 3.75). 06/1995; 7(5):1117-20.
Source: PubMed

ABSTRACT Electrical stimulation of the parafascicular but not the ventrolateral or dorsomedial thalamic nucleus (ten 0.5 ms, 10 V pulses, 140 microA) of freely moving rats induced a frequency-dependent (2.5, 5, 10 and 20 Hz) increase in the extracellular acetylcholine (ACh) content of the dorsal striatum, assessed by trans-striatal microdialysis. The time-dependent effect of 10 Hz stimulation was studied. The peak increase, 39% above baseline, was attained during 4 min of stimulation. This was blocked by coperfusion with 5 microM tetrodotoxin, indicating that the release we measured represents a physiological process. The facilitatory effect of parafascicular nucleus stimulation does not appear to be associated with indirect action through the cerebral frontal cortex because acute lesion of the excitatory corticostriatal afferents, which by itself reduced basal ACh release by 40%, did not modify the effect of 10 Hz stimulation. The possible involvement of the fasciculus retroflexus in the facilitation of ACh release was also ruled out. The non-competitive NMDA-type receptor antagonist MK-801, applied by reversed dialysis (30 microM) or systemically injected (0.2 mg/kg), significantly reduced the basal ACh output and prevented the tetanus-evoked increase in ACh release. The results provide in vivo evidence that the activity of the cholinergic neurons in the dorsal striatum is trans-synaptically modulated by parafascicular nucleus excitatory afferents through activation of the NMDA subtype of glutamate receptors that is probably located in the striatum.

0 Bookmarks
 · 
38 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thalamostriatal fibers are involved in cognitive tasks such as acquisition, learning, processing of sensory events, behavioral flexibility and might play a role in Parkinson´s disease. Aim of the present study was the in vivo electrochemical characterization of the projection from the lateral aspect of the parafascicular thalamus (Pfl) to the dorsolateral aspect of the nucleus accumbens (dNAc). Since nitric oxide (NO) plays a crucial role in striatal synaptic transmission, its implication in Pfl-evoked signaling within the dNAc was investigated. The Pfl was electrically stimulated utilizing paired pulses and extracellular potentials were recorded within the dNAc. Simultaneously, the dNAc was superfused using the push-pull superfusion technique for local application of compounds and for assessing the influence of NO on release of glutamate, aspartate and GABA. Stimulation of the Pfl evoked a negative-going component at 9-14ms followed by a positive-going component at 39-48ms. The early response was current-dependent and diminished by superfusion of the dNAc with tetrodotoxin, kynurenic acid or NG- nitro-L-arginine methyl ester (L-NAME), while 3-(2-hydroxy-2-nitroso-1- propylhydrazino)-1-propanamine (PAPA/NO) increased this evoked potential. Transmitter release was inhibited by L-NAME and facilitated by PAPA/NO. This study describes for the first time in vivo extracellular electrical responses of the dNAc on stimulation of the Pfl. Synaptic transmission within the dNAc on stimulation of the Pfl seems to be facilitated by NO.
    Life sciences 03/2014; · 2.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Because of our limited knowledge of the functional role of the thalamostriatal system, this massive network is often ignored in models of the pathophysiology of brain disorders of basal ganglia origin, such as Parkinson's disease (PD). However, over the past decade, significant advances have led to a deeper understanding of the anatomical, electrophysiological, behavioral and pathological aspects of the thalamostriatal system. The cloning of the vesicular glutamate transporters 1 and 2 (vGluT1 and vGluT2) has provided powerful tools to differentiate thalamostriatal from corticostriatal glutamatergic terminals, allowing us to carry out comparative studies of the synaptology and plasticity of these two systems in normal and pathological conditions. Findings from these studies have led to the recognition of two thalamostriatal systems, based on their differential origin from the caudal intralaminar nuclear group, the center median/parafascicular (CM/Pf) complex, or other thalamic nuclei. The recent use of optogenetic methods supports this model of the organization of the thalamostriatal systems, showing differences in functionality and glutamate receptor localization at thalamostriatal synapses from Pf and other thalamic nuclei. At the functional level, evidence largely gathered from thalamic recordings in awake monkeys strongly suggests that the thalamostriatal system from the CM/Pf is involved in regulating alertness and switching behaviors. Importantly, there is evidence that the caudal intralaminar nuclei and their axonal projections to the striatum partly degenerate in PD and that CM/Pf deep brain stimulation (DBS) may be therapeutically useful in several movement disorders.
    Frontiers in Systems Neuroscience 01/2014; 8:5.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence suggests that a circuit involving the centromedian-parafascicular (Pf) thalamus and basal ganglia is critical for a shift away from biased actions. In particular, excitatory input from the Pf onto striatal cholinergic neurons may facilitate behavioral flexibility. Accumulating evidence indicates that an endogenous increase in dorsomedial striatal acetylcholine (ACh) output enhances behavioral flexibility. The present experiments investigated whether the rat (Rattus norvegicus) Pf supports flexibility during reversal learning, in part, by modifying dorsomedial striatal ACh output. This was determined first by examining the effects of Pf inactivation, through infusion of the GABA agonists baclofen and muscimol, on place acquisition and reversal learning. Additional experiments examined Pf inactivation on dorsomedial striatal ACh output during reversal learning and a resting condition. Behavioral testing was performed in a cross-maze. In vivo microdialysis combined with HPLC/electrochemical detection was used to sample ACh from the dorsomedial striatum. Pf inactivation selectively impaired reversal learning in a dose-dependent manner. A subsequent study showed that an increase in dorsomedial striatal ACh efflux (∼30% above basal levels) during reversal learning was blocked by Pf inactivation, which concomitantly impaired reversal learning. In the resting condition, a dose of baclofen and muscimol that blocked a behaviorally induced increase in dorsomedial striatal ACh output did not reduce basal ACh efflux. Together, the present findings indicate that the Pf is an intralaminar thalamic nucleus critical for behavioral flexibility, in part, by directly affecting striatal ACh output under conditions that require a shift in choice patterns.
    Journal of Neuroscience 10/2010; 30(43):14390-8. · 6.91 Impact Factor