Article

Purification of an ATP-dependent actin-binding protein from a lower eukaryote, Physarum polycephalum.

Department of Pharmacology, Gunma University School of Medicine, Japan.
Biochemical and Biophysical Research Communications (Impact Factor: 2.41). 08/1995; 212(2):347-52. DOI:10.1006/bbrc.1995.1976
Source: PubMed

ABSTRACT A novel protein with a molecular mass of 55 kDa, as determined by SDS-PAGE, was purified from plasmodia of Physarum polycephalum. The protein bound to actin filaments with a stoichiometry of 0.27 moles per mole of actin with an apparent dissociation constant of 4 x 10(-8) M. In the presence of ATP, the protein dissociated from actin filaments. Adenosine 5-(gamma-thio)triphosphate and adenyl-5'-yl imidodiphosphate also abolished the actin-binding activity of the protein, but GTP did not. Because the cytoplasmic concentration of ATP oscillates in association with the shuttle streaming of the cytoplasm, it is possible that this protein might be involved in the actin-linked regulation of cytoplasmic streaming.

0 0
 · 
0 Bookmarks
 · 
22 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Coronin cDNA was cloned from the plasmodia of Physarum polycephalum. The amino acid sequence deduced from the cDNA was comprised of 449 residues and showed 60% identity to that of Dictyostelium discoideum coronin. Southern blot analysis suggested that the coronin gene present in the P. polycephalum genome might be a single copy. Coronin was expressed in diploid plasmodia, while it was not detected in haploid amoebae or spores.
    Bioscience Biotechnology and Biochemistry 04/2009; 73(3):747-9. · 1.27 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Drebrin is a well-known side-binding protein of F-actin in the brain. Immunohistochemical data suggest that the peripheral parts of growing axons are enriched in the drebrin E isoform and mature axons are not. It has also been observed that drebrin E is concentrated in the growth cones of PC12 cells. These data strongly suggest that drebrin E plays a role in axonal growth during development. In this study, we used primary hippocampal neuronal cultures to analyze the role of drebrin E. Immunocytochemistry showed that within axonal growth cones drebrin E specifically localized to the transitional zone, an area in which dense networks of F-actins and microtubules overlapped. Over-expression of drebrin E caused drebrin E and F-actin to accumulate throughout the growth cone and facilitated axonal growth. In contrast, knockdown of drebrin E reduced drebrin E and F-actin in the growth cone and prevented axonal growth. Furthermore, inhibition of myosin II ATPase masked the promoting effects of drebrin E over-expression on axonal growth. These results suggest that drebrin E plays a role in axonal growth through actin-myosin interactions in the transitional zone of axonal growth cones.
    Journal of Neurochemistry 03/2009; 109(2):611-22. · 3.97 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: After their translation and folding in the cytoplasm, proteins may be imported into an organelle, associate with a membrane, or rather become part of large, highly localised cytoplasmic structures such as the cytoskeleton. The localisation of a protein is governed by the strength of binding to its immediate target, such as an import receptor for an organelle or a major component of the cytoskeleton, e.g. actin. We have experimentally provided a set of actin-binding proteins with competing targeting information and expressed them at various concentrations to analyse the strength of the signal that governs their subcellular localisation. Our microscopic observations indicate that organellar sorting signals override the targeting preference of most cytoskeletal proteins. Among these signals, the nuclear localisation signal of SV40 is strongest, followed by the oligomerised PHB domain that targets vacuolin to the endosomal surface, and finally the tripeptide SKL mediating transport into the peroxisome. The actin-associated protein coronin, however, can only be misled by the nuclear localisation signal. Interestingly, the targeting behaviour of this model set of hybrid proteins in living Dictyostelium amoebae correlates surprisingly well with the affinities of their constituent signals derived from in vitro experiments conducted in various other organisms. Accordingly, this approach allows estimating the in vivo affinity of a protein to its target even if the latter is not known, as in the case of vacuolin.
    European Journal of Cell Biology 03/2008; 87(2):57-68. · 3.21 Impact Factor

R Ishikawa