Action of diphenylamine carboxylate derivatives, a family of non-steroidal anti-inflammatory drugs, on [Ca2+]i and Ca(2+)-activated channels in neurons.

Department of Physiology, University of New Mexico School of Medicine, Albuquerque 87131, USA.
Neuroscience Letters (Impact Factor: 2.06). 06/1995; 190(2):121-4. DOI: 10.1016/0304-3940(95)11518-2
Source: PubMed

ABSTRACT Ca(2+)-activated channels, including Ca(2+)-activated non-selective (CAN) channels and Ca(2+)-activated Cl- channels play important roles in regulating the electrical activity of neurons. No blockers of neuronal CAN channels have been previously reported. We used 2-electrode voltage clamping to measure membrane currents and fura-2 fluorescence imaging to measure [Ca2+]i in molluscan neurons. We show that the diphenylamine carboxylate derivative flufenamate (FFA), but not mefenamate or the parent compound, cause a transient increase in ICAN and a slow outward current, and a maintained increase in [Ca2+]i. We interpret this as a FFA-dependent release of Ca2+ from intracellular stores and Ca2+ influx, [Ca2+]i-dependent activation of the CAN and slow outward currents, and slow FFA-dependent channel block.

Download full-text


Available from: Lloyd Donald Partridge, May 04, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The activation of inhibitory synapses typically suppresses the generation of action potentials by hyperpolarizing the membrane of postsynaptic cells. In contrast to such conventional action of inhibitory synapses, we report here the ionic mechanism through which hyperpolarizing synapses trigger long-lasting discharges of action potentials that persist up to several tens of seconds. By using extracellular and intracellular recordings in slice preparations, we demonstrate that the activation of synaptic input from the limbic forebrain generates transient hyperpolarizing postsynaptic potentials in neurons of the medial part of the lateral habenular nucleus of the epithalamus. The synaptic hyperpolarization then sets off the coordinated activation of a distinct set of membrane ion channels and intracellular Ca2+ mobilization by internal stores. The activation of these cellular events in distinct temporal order drives a persistent depolarization of habenular cells and promotes long-lasting discharges of tonic action potentials. The cells in the medial division of the lateral habenula project to dopamine and serotonin cells in the midbrain. We suggest that these habenular cells, by generating persistent action potentials in response to a transient increase in the activity of the limbic forebrain, may contribute to the regulation of the serotonergic and dopaminergic activity in the brain.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 04/2004; 24(9):2172-81. DOI:10.1523/JNEUROSCI.4891-03.2004 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diphenylamine (DPA) is a compound from the third European Union (EU) list of priority pollutants. It was assigned by the EU to Germany to assess and control its environmental risks. DPA and derivatives are most commonly used as stabilizers in nitrocellulose-containing explosives and propellants, in the perfumery, and as antioxidants in the rubber and elastomer industry. DPA is also widely used to prevent post-harvest deterioration of apple and pear crops. DPA is a parent compound of many derivatives, which are used for the production of dyes, pharmaceuticals, photography chemicals and further small-scale applications. Diphenylamines are still produced worldwide by the chemical industries. First reports showed that DPA was found in soil and groundwater. Some ecotoxicological studies demonstrated the potential hazard of various diphenylamines to the aquatic environment and to bacteria and animals. Studies on the biodegradability of DPA and its derivatives are very sparse. Therefore, further investigation is required to determine the complete dimension of the potential environmental hazard and to introduce possible (bio)remediation techniques for sites that are contaminated with this class of compounds. This is the first detailed review on DPA and some derivatives summarizing their environmental relevance as it is published in the literature so far and this review will recommend conducting further research in the future.
    Chemosphere 01/2004; 53(8):809-18. DOI:10.1016/S0045-6535(03)00613-1 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Les canaux TRPC6 sont des canaux cationiques non sélectifs qui peuvent être activés par le diacylglycérol (DAG). Ils sont présents dans de nombreux tissus et types cellulaires, notamment dans le cortex de souris embryonnaire (à E13). Des expériences d'imagerie calcique réalisées sur des neurones de cortex de souris en culture ont révélé la présence de canaux cationiques activés par le DAG. Ils sont perméables aux ions Ca2+, Na+, Ba2+ et Mn2+. L'entrée de Ca2+ via ces canaux est indépendante de la protéine kinase C et elle est bloquée par le SKF-96365 et le Gd3+. Par ailleurs, l'acide flufénamique augmente l'amplitude des réponses calciques induites par le DAG. Des expériences d'électrophysiologie réalisées avec la technique du patch-clamp en configuration cellule entière ont montré que l'hyperforine, un activateur des canaux TRPC6, donne naissance à un courant cationique non sélectif, confirmant ainsi l'existence de canaux de type TRPC6 dans les neurones corticaux. Des analyses quantitatives en spectrométrie d'émission atomique à plasma couplé inductif, en spectrométrie d'absorption atomique et en fluorescence X avec la nanosonde synchrotron (µ-SXRF) révèlent que la surexpression de TRPC6 dans les cellules HEK-293 s'accompagne d'une augmentation du contenu intracellulaire en zinc, en soufre et en manganèse. Les résultats obtenus avec des sondes fluorescentes sensibles au zinc et au fer indiquent que les canaux TRPC6 peuvent transporter ces cations. Par ailleurs, les expériences en µ-SXRF montrent que l'activation des canaux TRPC6 en présence de fer induit une accumulation de ce métal dans les cellules HEK et les neurones. Au cours de notre étude, nous avons également mis en évidence l'action de deux agents (l'acide flufénamique et l'hyperforine), couramment utilisés pour modifier l'activité des canaux TRPC6, sur la physiologie mitochondriale et l'homéostasie des métaux. En effet, l'acide flufénamique et l'hyperforine non seulement modifient le fonctionnement des canaux TRPC6 mais ils exercent aussi une action de type découplante sur les mitochondries, provoquant une libération de Ca2+ et de Zn2+ à partir de ces organelles.