Helicobacter pylori infection: physiopathologic implication of N alpha-methyl histamine.

Centre hospitalier de Villeneuve-Saint-Georges, Villeneuve, Île-de-France, France
Gastroenterology (Impact Factor: 13.93). 05/1995; 108(4):959-66. DOI: 10.1016/0016-5085(95)90190-6
Source: PubMed

ABSTRACT In the gastric mucosa of Helicobacter pylori-infected subjects, we previously detected N alpha-methyl histamine (N alpha-MeHA), a minor catabolite of histamine and a potent agonist of histamine H3 receptors. The origin of N alpha-MeHA and its effects on gastric histamine and somatostatin in infected subjects were investigated.
Ten noninfected patients and 13 patients with intense colonization were compared. N alpha-MeHA content and its synthetic enzyme activity, N alpha-histamine methyltransferase, binding of [3H]N alpha-MeHA, histamine and somatostatin contents, and histidine decarboxylase activity were assayed in antral and fundic biopsy specimens and in cultured H. pylori strains.
Gastric histamine and somatostatin contents as well as histidine decarboxylase activity were decreased in infected patients and were restored to normal after antimicrobial treatment. Both N alpha-MeHA and N alpha-histamine methyltransferase activity were present in the mucosa of infected patients and in cultured strains and were very low in noninfected patients or after eradication of H. pylori. [3H]N alpha-MeHA bound to gastric mucosa but not to cultured strains. The [3H]N alpha-MeHA specific binding sites were characterized as H3 receptors. The amount of bound [3H]N alpha-MeHA seemed correlated positively with somatostatin content and histidine decarboxylase activity and negatively with N alpha-MeHA content and N alpha-histamine methyltransferase activity.
H. pylori is the main source of gastric N alpha-MeHA that may lower histidine decarboxylase activity and somatostatin content through H3 receptors.

Download full-text


Available from: Jacques Callebert, Jan 14, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histamine released from ECL cells elicits responses from a variety of cellular targets in the vicinity. Three sets of receptors are involved (H1, H2 and H3). Receptor occupation is promptly transduced into cellular responses. The responses, in turn, are terminated by diverse mechanisms: enzymatic inactivation, cellular uptake and desensitization at the receptor level. Under specific pathological conditions, histamine effects could be exaggerated by the presence of derivatives that may be of marginal relevance under physiological conditions. Images Figure 2
    The Yale journal of biology and medicine 11/1997; 71(3-4):173-82.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Helicobacter pylori has been recognized as a major cause of most of the diseases of the stomach. These diseases are preceded by lesions of gastritis induced by H. pylori. This long-standing infection gives us a very good model of interaction between a bacterium and its host. We will review the direct and indirect effects of H. pylori.
    The Yale journal of biology and medicine 11/1995; 69(1):35-7.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Helicobacter pylori is highly adapted to its unusual ecological niche in the human stomach. Urease activity permits H. pylori survival at a pH of <4 in vitro and is required for the organism to colonize in animal models. However, urease does not play an important role in the survival of the organism in a pH range between 4 and 7. Other mechanisms of pH homeostasis remain poorly understood, but preliminary studies indicate that novel proteins are produced when H.pylori cells are shifted from pH 7 to 3, and the gene encoding a P-type adenosine triphosphatase that may catalyze NH4+/H+ exchange across the cytoplasmic membrane has been cloned. Mechanisms of pH homeostasis in other enteric bacteria are reviewed and provide insight into additional pathways that may be used by H. pylori. An important adaptation of H. pylori to the gastric environment may be its ability to alter gastric acid secretion. Acute infection is associated with transient hypochlorhydria, whereas chronic infection is associated with hypergastrinemia and decreased somatostatin levels. Thus, the survival of H. pylori in the gastric environment may be attributed to both the development of specialized intrinsic defenses and the organism's ability to induce physiological alterations in the host environment.
    Gastroenterology 03/1996; 110(3):926-38. DOI:10.1053/gast.1996.v110.pm8608904 · 13.93 Impact Factor