Article

Garrow JS & Summerbell CD: Meta-analysis: effect of exercise, with or without dieting, on the body composition of overweight subjects. Eur. J. Clin. Nutr. 49, 1-10

Department of Human Nutrition, Medical College of St Bartholomew's Hospital, London, UK.
European Journal of Clinical Nutrition (Impact Factor: 2.95). 02/1995; 49(1):1-10.
Source: PubMed

ABSTRACT To determine if physical training conserves fat-free mass (FFM) in overweight men or women during weight loss.
Journals published between 1966 and 1993 were searched by MEDLINE and by handsearch to obtain all reports on human subjects in which the effect of exercise on body composition was studied in at least two concurrent treatment groups, of which at least one group did, and one group did not, undergo an exercise programme designed to promote fat loss. The relation between loss of weight, and loss of FFM, was examined by linear regression analysis among exercising and non-exercising groups of men or women.
Twenty-eight publications reported results on 226 sedentary men in 13 groups, 233 exercising men in 14 groups, 199 sedentary women in 23 groups, and 258 exercising women in 28 groups.
Aerobic exercise without dietary restriction among men caused a weight loss of 3 kg in 30 weeks compared with sedentary controls, and 1.4 kg in 12 weeks among women, but there was little effect on FFM. Resistance exercise had little effect on weight loss, but increased FFM by about 2 kg in men and 1 kg in women. Regression analysis shows that for a weight loss of 10 kg by diet alone the expected loss of FFM is 2.9 kg in men and 2.2 kg in women. When similar weight loss is achieved by exercise combined with dietary restriction the expected loss of FFM is reduced to 1.7 kg in men, and women. It is probable that the FFM conserved by exercise during weight loss contains more water and potassium than average FFM. The subjects studied were not severely obese.
Aerobic exercise causes a modest loss in weight without dieting. Exercise provides some conservation of FFM during weight loss by dieting, probably in part by maintaining glycogen and water.

Download full-text

Full-text

Available from: C. Summerbell, Apr 08, 2015
7 Followers
 · 
263 Views
  • Source
    • "Although, magnitude of weight loss achievable by exercise without caloric restriction is small and usually ranges from 2 to 7 kg, regular exercises decreases FM and spares FFM, as was observed in this study. Exercise confers significant health benefits to the overweight and obese, and improves plasma lipoprotein status, particular HDL and aminotransferases, which is known to decrease the risk of coronary heart disease and fatty liver15,16). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose Weight loss reduces cardiovascular risk factors in the obese. However, weight reduction through diet negatively affects long-term bone health. The aim of study was to determine the ability of combined aerobic and resistance exercise (CE) to reduce weight and cardiovascular risk without diminishing bone health. Methods Twenty-five young adults participated in an 8-week weight loss CE program. Subjects were allocated to an obese group or a control group by body mass index (BMI). Body weight, BMI, body composition, and bone mineral density (BMD) of the lumbar spine and total hip were measured before and after the CE trial. Serum levels of metabolic markers, including adipokines and bone markers, were also evaluated. Results Weight loss was evident in the obese group after the 8 weeks CE trial. Fat mass was significantly reduced in both groups. Fasting insulin, homeostatic model assessment-insulin resistance (HOMA-IR), leptin and aminotransferases level were significantly reduced from baseline only in the obese group. High density lipoprotein cholesterol increased in both groups. Hip BMD increased in the obese group. In all study subjects, BMI changes were correlated with HOMA-IR, leptin, and HDL changes. BMI decreases were correlated with lumbar spine BMD increases, lumbar spine BMD increases were positively correlated with osteocalcin changes, and lumbar spine bone mineral content increases were correlated negatively with C-terminal telopeptide of type 1 collagen changes. Conclusion These findings suggest that CE provides effective weight loss and improves cardiovascular risk factors without diminishing BMD. Furthermore, they indicate that lumbar spine BMD might be maintained by increasing bone formation and decreasing bone resorption.
    03/2013; 18(1):26-31. DOI:10.6065/apem.2013.18.1.26
  • Source
    • "Although some studies show that sex does not influence the composition of weight loss from energy restriction [27,28], this finding is inconsistent [29,30]. In men, our results are similar to those reported in the literature, with the expectation that ~70 % of weight loss is comprised of FM during dieting alone [31]. Women in the PRO group also compared similarly to what was expected for FM loss, while the women in the CARB group lost less FM. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Limited data on sex differences in body composition changes in response to higher protein diets (PRO) compared to higher carbohydrate diets (CARB) suggest that a PRO diet helps preserve lean mass (LM) in women more so than in men. To compare male and female body composition responses to weight loss diets differing in macronutrient content. Twelve month randomized clinical trial with 4mo of weight loss and 8mo weight maintenance. Overweight (N = 130; 58 male (M), 72 female (F); BMI = 32.5 ± 0.5 kg/m2) middle-aged subjects were randomized to energy-restricted (deficit ~500 kcal/d) diets providing protein at 1.6 g.kg-1.d-1 (PRO) or 0.8 g.kg-1.d-1 (CARB). LM and fat mass (FM) were measured using dual X-ray absorptiometry. Body composition outcomes were tested in a repeated measures ANOVA controlling for sex, diet, time and their two- and three-way interactions at 0, 4, 8 and 12mo. When expressed as percent change from baseline, males and females lost similar amounts of weight at 12mo (M:-11.2 ± 7.1 %, F:-9.9 ± 6.0 %), as did diet groups (PRO:-10.7 ± 6.8 %, CARB:-10.1 ± 6.2 %), with no interaction of gender and diet. A similar pattern emerged for fat mass and lean mass, however percent body fat was significantly influenced by both gender (M:-18.0 ± 12.8 %, F:-7.3 ± 8.1 %, p < 0.05) and diet (PRO:-14.3 ± 11.8 %, CARB:-9.3 ± 11.1 %, p < 0.05), with no gender-diet interaction. Compared to women, men carried an extra 7.0 ± 0.9 % of their total body fat in the trunk (P < 0.01) at baseline, and reduced trunk fat during weight loss more than women (M:-3.0 ± 0.5 %, F:-1.8 ± 0.3 %, p < 0.05). Conversely, women carried 7.2 ± 0.9 % more total body fat in the legs, but loss of total body fat in legs was similar in men and women. PRO was more effective in reducing percent body fat vs. CARB over 12mo weight loss and maintenance. Men lost percent total body fat and trunk fat more effectively than women. No interactive effects of protein intake and gender are evident.
    Nutrition & Metabolism 06/2012; 9(1):55. DOI:10.1186/1743-7075-9-55 · 3.36 Impact Factor
  • Source
    • "The addition of non-invasive long-term physiological measurements that do not disturb sleep, such as measures of sympathetic predominance measured by HRV, can reveal such sleep promoting alterations. Studies have shown that exercise definitely changes body composition (Garrow and Summerbell, 1995) and cardiovascular fitness levels (Warburton et al., 2006). Meta-analyses (Figure 1) indicate that chronic exercise yields more stable and persistent improvements in sleep. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This mini-review focuses on the effects of exercise on sleep. In its early days, sleep research largely focused on central nervous system (CNS) physiology using standardized tabulations of several sleep-specific landmark electroencephalogram (EEG) waveforms. Though coarse, this method has enabled the observation and inspection of numerous uninterrupted sleep phenomena. The research on the effects of exercise on sleep began, in the 1960s, with a focus primarily on sleep related EEG changes (CNS sleep). Those early studies found only small effects of exercise on sleep. However, more recent sleep research has explored not only CNS functioning, but somatic physiology as well. Sleep should be affected by daytime exercise, as physical activity alters endocrine, autonomic nervous system (ANS), and somatic functions. Since endocrinological, metabolic, and autonomic changes can be measured during sleep, it should be possible to assess exercise effects on somatic physiology in addition to CNS sleep quality, evaluated by standard polysomnographic (PSG) techniques. Additional measures of somatic physiology have provided enough evidences to conclude that the auto-regulatory, global regulation of sleep is not the exclusive domain of the CNS, but it is heavily influenced by inputs from the rest of the body.
    Frontiers in Neurology 04/2012; 3:48. DOI:10.3389/fneur.2012.00048
Show more